Spaces:
Sleeping
Sleeping
try: | |
import cloudinary | |
except: | |
import os | |
os.system('pip install cloudinary') | |
try: | |
import detectron2 | |
except: | |
import os | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
import cv2 | |
import json | |
from matplotlib.pyplot import axis | |
import gradio as gr | |
import requests | |
import numpy as np | |
from torch import nn | |
import requests | |
from numpy.lib.type_check import imag | |
import random | |
import time | |
import csv | |
import torch | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog | |
from detectron2.data.datasets import register_coco_instances | |
# import some common detectron2 utilities | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog, DatasetCatalog | |
from detectron2.utils.visualizer import ColorMode | |
import cloudinary.uploader | |
import io | |
import os | |
API_KEY =os.environ["API_KEY"] | |
Cloud_Name =os.environ["Cloud_Name"] | |
API_Secret =os.environ["API_Secret"] | |
cfg = get_cfg() | |
# try: | |
# register_coco_instances("Fiber", {}, "./labels-fiver.json", "./Fiber") | |
# Fiber_metadata = MetadataCatalog.get("Fiber") | |
# dataset_dicts = DatasetCatalog.get("Fiber") | |
# except: | |
# print("there is an issue") | |
register_coco_instances("Fiber", {}, "./labels-fiver.json", "./Fiber") | |
Fiber_metadata = MetadataCatalog.get("Fiber") | |
dataset_dicts = DatasetCatalog.get("Fiber") | |
model_path = "./model_final.pth" | |
# cfg = get_cfg() | |
# cfg.merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml") | |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 | |
# cfg.MODEL.WEIGHTS = model_path | |
my_metadata = MetadataCatalog.get("dbmdz_coco_all") | |
# Fiber_metadata.thing_classes = ["Fiber", "Fiber","Fiber"] | |
my_metadata.thing_classes = ["Fiber", "Fiber"] | |
cfg.merge_from_file("./configs/detectron2/mask_rcnn_R_50_FPN_3x.yaml") | |
cfg.MODEL.WEIGHTS = model_path #os.path.join(cfg.OUTPUT_DIR, "model_final.pth") | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.05 # set the testing threshold for this model | |
cfg.DATASETS.TEST = ("fiber", ) | |
# predictor = DefaultPredictor(cfg) | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE = "cpu" | |
def inference(image_url, image, min_score): | |
if image_url: | |
r = requests.get(image_url) | |
if r: | |
im = np.frombuffer(r.content, dtype="uint8") | |
im = cv2.imdecode(im, cv2.IMREAD_COLOR) | |
else: | |
# Model expect BGR! | |
im = image[:,:,::-1] | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.005 | |
predictor = DefaultPredictor(cfg) | |
outputs = predictor(im) | |
# v = Visualizer(im, my_metadata, scale=1) | |
# out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
# for d in random.sample(dataset_dicts, 3): | |
# img = cv2.imread("https://meet.google.com/ice-wndh-joi.jpg") | |
# predictor(img) | |
# visualizer = Visualizer(img[:, :, ::-1], metadata=Fiber_metadata, scale=1) | |
# vis = visualizer.draw_dataset_dict(d) | |
# cv2_imshow(vis.get_image()[:, :, ::-1]) | |
# !zip -r ./fiber.zip "/content/Fiber" | |
# import json | |
# from google.colab import files | |
# uploaded = files.upload() | |
# im = cv2.imread([key for key in uploaded.keys() | |
# ][0]) | |
# im = cv2.imread(d["file_name"]) | |
# outputs = predictor(im) | |
v = Visualizer(im[:, :, ::-1], | |
metadata=my_metadata , #Fiber_metadata, | |
scale=1, | |
instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels | |
) | |
v = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
# cv2_imshow(v.get_image()[:, :, ::-1]) | |
# print(outputs["instances"]) | |
masks = np.asarray(outputs["instances"].pred_masks.to("cpu")) | |
# bbox = np.asarray(outputs["instances"].pred_boxes.to("cpu")) | |
# Pick an item to mask | |
# img=v.get_image() | |
# Define a dictionary to store the measurements and their positions | |
measurements = {} | |
for ind,item_mask in enumerate(masks): | |
segmentation = np.where(item_mask == True) | |
if segmentation[1].any() and segmentation[0].any(): | |
# box=bbox[ind] | |
# Get the true bounding box of the mask (not the same as the bbox prediction) | |
x_min = int(np.min(segmentation[1])) | |
x_max = int(np.max(segmentation[1])) | |
y_min = int(np.min(segmentation[0])) | |
y_max = int(np.max(segmentation[0])) | |
measurement = int(0.5+len(segmentation[0])/600) | |
measurements[ind] = {'measurement': measurement, 'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max} | |
# cv2.putText(img=img, text=str(int(0.5+len( segmentation[0])/600)), org=(x_min+20,y_min-10), fontFace=cv2.FONT_HERSHEY_TRIPLEX, fontScale=0.8, color=(0, 255, 0),thickness=2) | |
# Loop over the masks | |
# return outputs | |
for ind, item_mask in enumerate(masks): | |
segmentation = np.where(item_mask == True) | |
measurement = int(0.5+len(segmentation[0])/600) | |
measurements[ind] = {'measurement': measurement, 'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max} | |
cloudinary.config( | |
cloud_name = Cloud_Name, | |
api_key = API_KEY, | |
api_secret = API_Secret, | |
secure = True | |
) | |
# Replace with the name of your CSV file | |
filename = "your_file.csv" | |
# Write the measurements to a CSV file | |
filename=str(time.time())+'dmeasurements.csv' | |
with open(filename, mode='w') as file: | |
writer = csv.writer(file) | |
writer.writerow(['ID', 'Measurement', 'X_Min', 'X_Max', 'Y_Min', 'Y_Max']) | |
for id, data in measurements.items(): | |
writer.writerow([id, data['measurement'], data['x_min'], data['x_max'], data['y_min'], data['y_max']]) | |
# Convert the CSV content to a bytes object | |
csv_bytes = io.StringIO( open(filename,"r").read()).read().encode("utf-8") | |
# Upload the file to Cloudinary | |
upload_result = cloudinary.uploader.upload( | |
csv_bytes, | |
resource_type = "raw", | |
folder = "csv_files", | |
public_id =filename, | |
overwrite = False | |
) | |
# return file | |
return upload_result["url"], v.get_image() | |
title = " fi ber detec tion Model " | |
description = "" | |
article = '' | |
gr.Interface( | |
inference, | |
[gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"), | |
gr.inputs.Image(type="numpy", label="Input Image"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.01, label="Minimum score"), | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=[], | |
outputs=[ "text","image"], | |
).launch() | |