mosidi's picture
Update app.py
dc7aa17
try:
import cloudinary
except:
import os
os.system('pip install cloudinary')
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import cv2
import json
from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests
from numpy.lib.type_check import imag
import random
import time
import csv
import torch
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.data.datasets import register_coco_instances
# import some common detectron2 utilities
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.utils.visualizer import ColorMode
import cloudinary.uploader
import io
import os
API_KEY =os.environ["API_KEY"]
Cloud_Name =os.environ["Cloud_Name"]
API_Secret =os.environ["API_Secret"]
cfg = get_cfg()
# try:
# register_coco_instances("Fiber", {}, "./labels-fiver.json", "./Fiber")
# Fiber_metadata = MetadataCatalog.get("Fiber")
# dataset_dicts = DatasetCatalog.get("Fiber")
# except:
# print("there is an issue")
register_coco_instances("Fiber", {}, "./labels-fiver.json", "./Fiber")
Fiber_metadata = MetadataCatalog.get("Fiber")
dataset_dicts = DatasetCatalog.get("Fiber")
model_path = "./model_final.pth"
# cfg = get_cfg()
# cfg.merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
# cfg.MODEL.WEIGHTS = model_path
my_metadata = MetadataCatalog.get("dbmdz_coco_all")
# Fiber_metadata.thing_classes = ["Fiber", "Fiber","Fiber"]
my_metadata.thing_classes = ["Fiber", "Fiber"]
cfg.merge_from_file("./configs/detectron2/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.WEIGHTS = model_path #os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.05 # set the testing threshold for this model
cfg.DATASETS.TEST = ("fiber", )
# predictor = DefaultPredictor(cfg)
if not torch.cuda.is_available():
cfg.MODEL.DEVICE = "cpu"
def inference(image_url, image, min_score):
if image_url:
r = requests.get(image_url)
if r:
im = np.frombuffer(r.content, dtype="uint8")
im = cv2.imdecode(im, cv2.IMREAD_COLOR)
else:
# Model expect BGR!
im = image[:,:,::-1]
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.005
predictor = DefaultPredictor(cfg)
outputs = predictor(im)
# v = Visualizer(im, my_metadata, scale=1)
# out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# for d in random.sample(dataset_dicts, 3):
# img = cv2.imread("https://meet.google.com/ice-wndh-joi.jpg")
# predictor(img)
# visualizer = Visualizer(img[:, :, ::-1], metadata=Fiber_metadata, scale=1)
# vis = visualizer.draw_dataset_dict(d)
# cv2_imshow(vis.get_image()[:, :, ::-1])
# !zip -r ./fiber.zip "/content/Fiber"
# import json
# from google.colab import files
# uploaded = files.upload()
# im = cv2.imread([key for key in uploaded.keys()
# ][0])
# im = cv2.imread(d["file_name"])
# outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=my_metadata , #Fiber_metadata,
scale=1,
instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# cv2_imshow(v.get_image()[:, :, ::-1])
# print(outputs["instances"])
masks = np.asarray(outputs["instances"].pred_masks.to("cpu"))
# bbox = np.asarray(outputs["instances"].pred_boxes.to("cpu"))
# Pick an item to mask
# img=v.get_image()
# Define a dictionary to store the measurements and their positions
measurements = {}
for ind,item_mask in enumerate(masks):
segmentation = np.where(item_mask == True)
if segmentation[1].any() and segmentation[0].any():
# box=bbox[ind]
# Get the true bounding box of the mask (not the same as the bbox prediction)
x_min = int(np.min(segmentation[1]))
x_max = int(np.max(segmentation[1]))
y_min = int(np.min(segmentation[0]))
y_max = int(np.max(segmentation[0]))
measurement = int(0.5+len(segmentation[0])/600)
measurements[ind] = {'measurement': measurement, 'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max}
# cv2.putText(img=img, text=str(int(0.5+len( segmentation[0])/600)), org=(x_min+20,y_min-10), fontFace=cv2.FONT_HERSHEY_TRIPLEX, fontScale=0.8, color=(0, 255, 0),thickness=2)
# Loop over the masks
# return outputs
for ind, item_mask in enumerate(masks):
segmentation = np.where(item_mask == True)
measurement = int(0.5+len(segmentation[0])/600)
measurements[ind] = {'measurement': measurement, 'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max}
cloudinary.config(
cloud_name = Cloud_Name,
api_key = API_KEY,
api_secret = API_Secret,
secure = True
)
# Replace with the name of your CSV file
filename = "your_file.csv"
# Write the measurements to a CSV file
filename=str(time.time())+'dmeasurements.csv'
with open(filename, mode='w') as file:
writer = csv.writer(file)
writer.writerow(['ID', 'Measurement', 'X_Min', 'X_Max', 'Y_Min', 'Y_Max'])
for id, data in measurements.items():
writer.writerow([id, data['measurement'], data['x_min'], data['x_max'], data['y_min'], data['y_max']])
# Convert the CSV content to a bytes object
csv_bytes = io.StringIO( open(filename,"r").read()).read().encode("utf-8")
# Upload the file to Cloudinary
upload_result = cloudinary.uploader.upload(
csv_bytes,
resource_type = "raw",
folder = "csv_files",
public_id =filename,
overwrite = False
)
# return file
return upload_result["url"], v.get_image()
title = " fi ber detec tion Model "
description = ""
article = ''
gr.Interface(
inference,
[gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"),
gr.inputs.Image(type="numpy", label="Input Image"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.01, label="Minimum score"),
],
title=title,
description=description,
article=article,
examples=[],
outputs=[ "text","image"],
).launch()