Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import os | |
import torch | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import matplotlib | |
from PIL import Image | |
from transformers import AutoModelForCausalLM | |
matplotlib.use("Agg") # Use Agg backend for non-interactive plotting | |
os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True | |
model = AutoModelForCausalLM.from_pretrained( | |
"vikhyatk/moondream-next", | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
device_map={"": "cuda"}, | |
revision="64ce9d45e8603058826ab339d3bb0f48f7289b1f" | |
) | |
def visualize_faces_and_gaze(face_boxes, gaze_points=None, image=None, show_plot=True): | |
"""Visualization function that can handle faces without gaze data""" | |
# Calculate figure size based on image aspect ratio | |
if image is not None: | |
height, width = image.shape[:2] | |
aspect_ratio = width / height | |
fig_height = 6 # Base height | |
fig_width = fig_height * aspect_ratio | |
else: | |
width, height = 800, 600 | |
fig_width, fig_height = 10, 8 | |
# Create figure with tight layout | |
fig = plt.figure(figsize=(fig_width, fig_height)) | |
ax = fig.add_subplot(111) | |
if image is not None: | |
ax.imshow(image) | |
else: | |
ax.set_facecolor("#1a1a1a") | |
fig.patch.set_facecolor("#1a1a1a") | |
colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes))) | |
for i, (face_box, color) in enumerate(zip(face_boxes, colors)): | |
hex_color = "#{:02x}{:02x}{:02x}".format( | |
int(color[0] * 255), int(color[1] * 255), int(color[2] * 255) | |
) | |
x, y, width_box, height_box = face_box | |
face_center_x = x + width_box / 2 | |
face_center_y = y + height_box / 2 | |
# Draw face bounding box | |
face_rect = plt.Rectangle( | |
(x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2 | |
) | |
ax.add_patch(face_rect) | |
# Draw gaze line if gaze data is available | |
if gaze_points is not None and i < len(gaze_points) and gaze_points[i] is not None: | |
gaze_x, gaze_y = gaze_points[i] | |
points = 50 | |
alphas = np.linspace(0.8, 0, points) | |
x_points = np.linspace(face_center_x, gaze_x, points) | |
y_points = np.linspace(face_center_y, gaze_y, points) | |
for j in range(points - 1): | |
ax.plot( | |
[x_points[j], x_points[j + 1]], | |
[y_points[j], y_points[j + 1]], | |
color=hex_color, | |
alpha=alphas[j], | |
linewidth=4, | |
) | |
ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5) | |
ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6) | |
# Set plot limits and remove axes | |
ax.set_xlim(0, width) | |
ax.set_ylim(height, 0) | |
ax.set_aspect("equal") | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
# Remove padding around the plot | |
plt.subplots_adjust(left=0, right=1, bottom=0, top=1) | |
return fig | |
def process_image(input_image, use_ensemble): | |
if input_image is None: | |
return None, "" | |
try: | |
# Convert to PIL Image if needed | |
if isinstance(input_image, np.ndarray): | |
pil_image = Image.fromarray(input_image) | |
else: | |
pil_image = input_image | |
# Get image encoding | |
enc_image = model.encode_image(pil_image) | |
if use_ensemble: | |
flipped_pil = pil_image.copy().transpose(method=Image.FLIP_LEFT_RIGHT) | |
flip_enc_image = model.encode_image(flipped_pil) | |
else: | |
flip_enc_image = None | |
# Detect faces | |
faces = model.detect(enc_image, "face")["objects"] | |
if not faces: | |
return None, "No faces detected in the image." | |
# Process each face | |
face_boxes = [] | |
gaze_points = [] | |
for face in faces: | |
# Add face bounding box regardless of gaze detection | |
face_box = ( | |
face["x_min"] * pil_image.width, | |
face["y_min"] * pil_image.height, | |
(face["x_max"] - face["x_min"]) * pil_image.width, | |
(face["y_max"] - face["y_min"]) * pil_image.height, | |
) | |
face_center = ( | |
(face["x_min"] + face["x_max"]) / 2, | |
(face["y_min"] + face["y_max"]) / 2 | |
) | |
face_boxes.append(face_box) | |
# Try to detect gaze | |
gaze_settings = { | |
"prioritize_accuracy": use_ensemble, | |
"flip_enc_img": flip_enc_image | |
} | |
gaze = model.detect_gaze(enc_image, face=face, eye=face_center, unstable_settings=gaze_settings)["gaze"] | |
if gaze is not None: | |
gaze_point = ( | |
gaze["x"] * pil_image.width, | |
gaze["y"] * pil_image.height, | |
) | |
gaze_points.append(gaze_point) | |
else: | |
gaze_points.append(None) | |
# Create visualization | |
image_array = np.array(pil_image) | |
fig = visualize_faces_and_gaze( | |
face_boxes, gaze_points, image=image_array, show_plot=False | |
) | |
faces_with_gaze = sum(1 for gp in gaze_points if gp is not None) | |
status = f"Found {len(faces)} faces. {len(faces) - faces_with_gaze} gazing out of frame." | |
return fig, status | |
except Exception as e: | |
return None, f"Error processing image: {str(e)}" | |
with gr.Blocks(title="Moondream Gaze Detection") as app: | |
gr.Markdown("# π Moondream Gaze Detection") | |
gr.Markdown("Upload an image to detect faces and visualize their gaze directions. Join the [Moondream Discord server](https://discord.com/invite/tRUdpjDQfH) if you have questions about how this works.") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil") | |
use_ensemble = gr.Checkbox( | |
label="Use Ensemble Mode", | |
value=False, | |
info="Ensemble mode combines multiple predictions for higher accuracy." | |
) | |
with gr.Column(): | |
output_text = gr.Textbox(label="Status") | |
output_plot = gr.Plot(label="Visualization") | |
input_image.change( | |
fn=process_image, inputs=[input_image, use_ensemble], outputs=[output_plot, output_text] | |
) | |
use_ensemble.change( | |
fn=process_image, inputs=[input_image, use_ensemble], outputs=[output_plot, output_text] | |
) | |
gr.Examples( | |
examples=["demo1.jpg", "demo2.jpg", "demo3.jpg", "demo4.jpg", "demo5.jpg", "demo6.jpg", "demo7.jpg", "demo8.jpg"], | |
inputs=input_image, | |
) | |
if __name__ == "__main__": | |
app.launch() |