Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
from collections import namedtuple | |
import enum | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from modules import sd_models, cache, errors, hashes, shared | |
import modules.models.sd3.mmdit | |
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module']) | |
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} | |
class SdVersion(enum.Enum): | |
Unknown = 1 | |
SD1 = 2 | |
SD2 = 3 | |
SDXL = 4 | |
class NetworkOnDisk: | |
def __init__(self, name, filename): | |
self.name = name | |
self.filename = filename | |
self.metadata = {} | |
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors" | |
def read_metadata(): | |
metadata = sd_models.read_metadata_from_safetensors(filename) | |
return metadata | |
if self.is_safetensors: | |
try: | |
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata) | |
except Exception as e: | |
errors.display(e, f"reading lora {filename}") | |
if self.metadata: | |
m = {} | |
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): | |
m[k] = v | |
self.metadata = m | |
self.alias = self.metadata.get('ss_output_name', self.name) | |
self.hash = None | |
self.shorthash = None | |
self.set_hash( | |
self.metadata.get('sshs_model_hash') or | |
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or | |
'' | |
) | |
self.sd_version = self.detect_version() | |
def detect_version(self): | |
if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"): | |
return SdVersion.SDXL | |
elif str(self.metadata.get('ss_v2', "")) == "True": | |
return SdVersion.SD2 | |
elif len(self.metadata): | |
return SdVersion.SD1 | |
return SdVersion.Unknown | |
def set_hash(self, v): | |
self.hash = v | |
self.shorthash = self.hash[0:12] | |
if self.shorthash: | |
import networks | |
networks.available_network_hash_lookup[self.shorthash] = self | |
def read_hash(self): | |
if not self.hash: | |
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '') | |
def get_alias(self): | |
import networks | |
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases: | |
return self.name | |
else: | |
return self.alias | |
class Network: # LoraModule | |
def __init__(self, name, network_on_disk: NetworkOnDisk): | |
self.name = name | |
self.network_on_disk = network_on_disk | |
self.te_multiplier = 1.0 | |
self.unet_multiplier = 1.0 | |
self.dyn_dim = None | |
self.modules = {} | |
self.bundle_embeddings = {} | |
self.mtime = None | |
self.mentioned_name = None | |
"""the text that was used to add the network to prompt - can be either name or an alias""" | |
class ModuleType: | |
def create_module(self, net: Network, weights: NetworkWeights) -> Network | None: | |
return None | |
class NetworkModule: | |
def __init__(self, net: Network, weights: NetworkWeights): | |
self.network = net | |
self.network_key = weights.network_key | |
self.sd_key = weights.sd_key | |
self.sd_module = weights.sd_module | |
if isinstance(self.sd_module, modules.models.sd3.mmdit.QkvLinear): | |
s = self.sd_module.weight.shape | |
self.shape = (s[0] // 3, s[1]) | |
elif hasattr(self.sd_module, 'weight'): | |
self.shape = self.sd_module.weight.shape | |
elif isinstance(self.sd_module, nn.MultiheadAttention): | |
# For now, only self-attn use Pytorch's MHA | |
# So assume all qkvo proj have same shape | |
self.shape = self.sd_module.out_proj.weight.shape | |
else: | |
self.shape = None | |
self.ops = None | |
self.extra_kwargs = {} | |
if isinstance(self.sd_module, nn.Conv2d): | |
self.ops = F.conv2d | |
self.extra_kwargs = { | |
'stride': self.sd_module.stride, | |
'padding': self.sd_module.padding | |
} | |
elif isinstance(self.sd_module, nn.Linear): | |
self.ops = F.linear | |
elif isinstance(self.sd_module, nn.LayerNorm): | |
self.ops = F.layer_norm | |
self.extra_kwargs = { | |
'normalized_shape': self.sd_module.normalized_shape, | |
'eps': self.sd_module.eps | |
} | |
elif isinstance(self.sd_module, nn.GroupNorm): | |
self.ops = F.group_norm | |
self.extra_kwargs = { | |
'num_groups': self.sd_module.num_groups, | |
'eps': self.sd_module.eps | |
} | |
self.dim = None | |
self.bias = weights.w.get("bias") | |
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None | |
self.scale = weights.w["scale"].item() if "scale" in weights.w else None | |
self.dora_scale = weights.w.get("dora_scale", None) | |
self.dora_norm_dims = len(self.shape) - 1 | |
def multiplier(self): | |
if 'transformer' in self.sd_key[:20]: | |
return self.network.te_multiplier | |
else: | |
return self.network.unet_multiplier | |
def calc_scale(self): | |
if self.scale is not None: | |
return self.scale | |
if self.dim is not None and self.alpha is not None: | |
return self.alpha / self.dim | |
return 1.0 | |
def apply_weight_decompose(self, updown, orig_weight): | |
# Match the device/dtype | |
orig_weight = orig_weight.to(updown.dtype) | |
dora_scale = self.dora_scale.to(device=orig_weight.device, dtype=updown.dtype) | |
updown = updown.to(orig_weight.device) | |
merged_scale1 = updown + orig_weight | |
merged_scale1_norm = ( | |
merged_scale1.transpose(0, 1) | |
.reshape(merged_scale1.shape[1], -1) | |
.norm(dim=1, keepdim=True) | |
.reshape(merged_scale1.shape[1], *[1] * self.dora_norm_dims) | |
.transpose(0, 1) | |
) | |
dora_merged = ( | |
merged_scale1 * (dora_scale / merged_scale1_norm) | |
) | |
final_updown = dora_merged - orig_weight | |
return final_updown | |
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): | |
if self.bias is not None: | |
updown = updown.reshape(self.bias.shape) | |
updown += self.bias.to(orig_weight.device, dtype=updown.dtype) | |
updown = updown.reshape(output_shape) | |
if len(output_shape) == 4: | |
updown = updown.reshape(output_shape) | |
if orig_weight.size().numel() == updown.size().numel(): | |
updown = updown.reshape(orig_weight.shape) | |
if ex_bias is not None: | |
ex_bias = ex_bias * self.multiplier() | |
updown = updown * self.calc_scale() | |
if self.dora_scale is not None: | |
updown = self.apply_weight_decompose(updown, orig_weight) | |
return updown * self.multiplier(), ex_bias | |
def calc_updown(self, target): | |
raise NotImplementedError() | |
def forward(self, x, y): | |
"""A general forward implementation for all modules""" | |
if self.ops is None: | |
raise NotImplementedError() | |
else: | |
updown, ex_bias = self.calc_updown(self.sd_module.weight) | |
return y + self.ops(x, weight=updown, bias=ex_bias, **self.extra_kwargs) | |