Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
from abc import ABC, abstractmethod | |
from typing import Any, Callable, Sequence | |
from math import log2, ceil | |
import torch | |
from numpy.typing import DTypeLike | |
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType, QK_K | |
from .lazy import LazyNumpyTensor | |
import numpy as np | |
quick_split = lambda x, p: torch.split(x, p + [x.shape[1] - sum(p)], dim=1) | |
def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]: | |
block_size, type_size = GGML_QUANT_SIZES[quant_type] | |
if shape[-1] % block_size != 0: | |
raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})") | |
return (*shape[:-1], shape[-1] // block_size * type_size) | |
def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]: | |
block_size, type_size = GGML_QUANT_SIZES[quant_type] | |
if shape[-1] % type_size != 0: | |
raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})") | |
return (*shape[:-1], shape[-1] // type_size * block_size) | |
# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time | |
def _apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray: | |
rows = arr.reshape((-1, arr.shape[-1])) | |
osize = 1 | |
for dim in oshape: | |
osize *= dim | |
out = np.empty(shape=osize, dtype=otype) | |
# compute over groups of 16 rows (arbitrary, but seems good for performance) | |
n_groups = (rows.shape[0] // 16) or 1 | |
np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out) | |
return out.reshape(oshape) | |
# round away from zero | |
# ref: https://stackoverflow.com/a/59143326/22827863 | |
def np_roundf(n: np.ndarray) -> np.ndarray: | |
a = abs(n) | |
floored = np.floor(a) | |
b = floored + np.floor(2 * (a - floored)) | |
return np.sign(n) * b | |
class QuantError(Exception): ... | |
_type_traits: dict[GGMLQuantizationType, type[__Quant]] = {} | |
def quantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: | |
if qtype == GGMLQuantizationType.F32: | |
return data.astype(np.float32, copy=False) | |
elif qtype == GGMLQuantizationType.F16: | |
return data.astype(np.float16, copy=False) | |
elif (q := _type_traits.get(qtype)) is not None: | |
return q.quantize(data) | |
else: | |
raise NotImplementedError(f"Quantization for {qtype.name} is not yet implemented") | |
def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: | |
if qtype == GGMLQuantizationType.F32: | |
return data.view(np.float32) | |
elif qtype == GGMLQuantizationType.F16: | |
return data.view(np.float16).astype(np.float32) | |
elif (q := _type_traits.get(qtype)) is not None: | |
return q.dequantize(data) | |
else: | |
raise NotImplementedError(f"Dequantization for {qtype.name} is not yet implemented") | |
class __Quant(ABC): | |
qtype: GGMLQuantizationType | |
block_size: int | |
type_size: int | |
grid: np.ndarray[Any, np.dtype[np.float32]] | None = None | |
grid_shape: tuple[int, int] = (0, 0) | |
grid_map: tuple[int | float, ...] = () | |
grid_hex: bytes | None = None | |
def __init__(self): | |
return TypeError("Quant conversion classes can't have instances") | |
def __init_subclass__(cls, qtype: GGMLQuantizationType) -> None: | |
cls.qtype = qtype | |
cls.block_size, cls.type_size = GGML_QUANT_SIZES[qtype] | |
cls.__quantize_lazy = LazyNumpyTensor._wrap_fn( | |
cls.__quantize_array, | |
meta_noop=(np.uint8, cls.__shape_to_bytes) | |
) | |
cls.__dequantize_lazy = LazyNumpyTensor._wrap_fn( | |
cls.__dequantize_array, | |
meta_noop=(np.float32, cls.__shape_from_bytes) | |
) | |
assert qtype not in _type_traits | |
_type_traits[qtype] = cls | |
def init_grid(cls): | |
if cls.grid is not None or cls.grid_hex is None: | |
return | |
bits_per_elem = ceil(log2(len(cls.grid_map))) | |
assert bits_per_elem != 0, cls.qtype.name | |
elems_per_byte = 8 // bits_per_elem | |
grid = np.frombuffer(cls.grid_hex, dtype=np.uint8) | |
# decode hexadecimal chars from grid | |
grid = grid.reshape((-1, 2)) | |
grid = (np.where(grid > 0x40, grid + 9, grid) & 0x0F) << np.array([4, 0], dtype=np.uint8).reshape((1, 2)) | |
grid = grid[..., 0] | grid[..., 1] | |
# unpack the grid values | |
grid = grid.reshape((-1, 1)) >> np.array([i for i in range(0, 8, 8 // elems_per_byte)], dtype=np.uint8).reshape((1, elems_per_byte)) | |
grid = (grid & ((1 << bits_per_elem) - 1)).reshape((-1, 1)) | |
grid_map = np.array(cls.grid_map, dtype=np.float32).reshape((1, -1)) | |
grid = np.take_along_axis(grid_map, grid, axis=-1) | |
cls.grid = grid.reshape((1, 1, *cls.grid_shape)) | |
def quantize_pytorch(cls, data: torch.Tensor, original_shape) -> torch.Tensor: | |
# Copyright Forge 2024, AGPL V3 + CC-BY SA | |
original_shape = [x for x in original_shape] | |
original_shape[-1] = -1 | |
original_shape = tuple(original_shape) | |
block_size, type_size = GGML_QUANT_SIZES[cls.qtype] | |
blocks = data.reshape(-1, block_size) | |
blocks = cls.quantize_blocks_pytorch(blocks, block_size, type_size) | |
return blocks.reshape(original_shape) | |
def dequantize_pytorch(cls, data: torch.Tensor, original_shape) -> torch.Tensor: | |
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) | |
block_size, type_size = GGML_QUANT_SIZES[cls.qtype] | |
rows = data.reshape((-1, data.shape[-1])).view(torch.uint8) | |
n_blocks = rows.numel() // type_size | |
blocks = rows.reshape((n_blocks, type_size)) | |
blocks = cls.dequantize_blocks_pytorch(blocks, block_size, type_size) | |
return blocks.reshape(original_shape) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
raise NotImplementedError | |
def quantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
raise NotImplementedError('Low bit LoRA for this data type is not implemented yet. Please select "Automatic (fp16 LoRA)" in "Diffusion in Low Bits" (on the top line of this page) to use this LoRA.') | |
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
raise NotImplementedError | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
raise NotImplementedError | |
def quantize_rows(cls, rows: np.ndarray) -> np.ndarray: | |
rows = rows.astype(np.float32, copy=False) | |
shape = rows.shape | |
n_blocks = rows.size // cls.block_size | |
blocks = rows.reshape((n_blocks, cls.block_size)) | |
blocks = cls.quantize_blocks(blocks) | |
assert blocks.dtype == np.uint8 | |
assert blocks.shape[-1] == cls.type_size | |
return blocks.reshape(cls.__shape_to_bytes(shape)) | |
def dequantize_rows(cls, rows: np.ndarray) -> np.ndarray: | |
rows = rows.view(np.uint8) | |
shape = rows.shape | |
n_blocks = rows.size // cls.type_size | |
blocks = rows.reshape((n_blocks, cls.type_size)) | |
blocks = cls.dequantize_blocks(blocks) | |
assert blocks.dtype == np.float32 | |
assert blocks.shape[-1] == cls.block_size | |
return blocks.reshape(cls.__shape_from_bytes(shape)) | |
def __shape_to_bytes(cls, shape: Sequence[int]): | |
return quant_shape_to_byte_shape(shape, cls.qtype) | |
def __shape_from_bytes(cls, shape: Sequence[int]): | |
return quant_shape_from_byte_shape(shape, cls.qtype) | |
def __quantize_array(cls, array: np.ndarray) -> np.ndarray: | |
return _apply_over_grouped_rows(cls.quantize_rows, arr=array, otype=np.uint8, oshape=cls.__shape_to_bytes(array.shape)) | |
def __dequantize_array(cls, array: np.ndarray) -> np.ndarray: | |
cls.init_grid() | |
return _apply_over_grouped_rows(cls.dequantize_rows, arr=array, otype=np.float32, oshape=cls.__shape_from_bytes(array.shape)) | |
def __quantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any: | |
pass | |
def __dequantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any: | |
pass | |
def can_quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> bool: | |
return tensor.shape[-1] % cls.block_size == 0 | |
def quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray: | |
if not cls.can_quantize(tensor): | |
raise QuantError(f"Can't quantize tensor with shape {tensor.shape} to {cls.qtype.name}") | |
if isinstance(tensor, LazyNumpyTensor): | |
return cls.__quantize_lazy(tensor) | |
else: | |
return cls.__quantize_array(tensor) | |
def dequantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray: | |
if isinstance(tensor, LazyNumpyTensor): | |
return cls.__dequantize_lazy(tensor) | |
else: | |
return cls.__dequantize_array(tensor) | |
class BF16(__Quant, qtype=GGMLQuantizationType.BF16): | |
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h | |
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n = blocks.view(np.uint32) | |
# force nan to quiet | |
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n) | |
# round to nearest even | |
n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16 | |
return n.astype(np.uint16).view(np.uint8) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32) | |
class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0): | |
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
imax = abs(blocks).argmax(axis=-1, keepdims=True) | |
max = np.take_along_axis(blocks, imax, axis=-1) | |
d = max / -8 | |
with np.errstate(divide="ignore"): | |
id = np.where(d == 0, 0, 1 / d) | |
# FIXME: Q4_0's reference rounding is cursed and depends on FMA | |
qs = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15) | |
qs = qs.reshape((n_blocks, 2, cls.block_size // 2)) | |
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) | |
d = d.astype(np.float16).view(np.uint8) | |
return np.concatenate([d, qs], axis=-1) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, qs = np.hsplit(blocks, [2]) | |
d = d.view(np.float16).astype(np.float32) | |
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.int8) - np.int8(8) | |
return (d * qs.astype(np.float32)) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
n_blocks = blocks.shape[0] | |
d = blocks[:, :2].view(torch.float16) | |
qs = blocks[:, 2:] | |
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1)) | |
qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8 | |
return d * qs | |
def quantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
# Copyright Forge 2024, AGPL V3 + CC-BY SA | |
n_blocks = blocks.shape[0] | |
imax = torch.abs(blocks).argmax(dim=-1, keepdim=True) | |
max_vals = torch.gather(blocks, -1, imax) | |
d = max_vals / -8 | |
id = torch.where(d == 0, torch.tensor(0.0, device=d.device), 1.0 / d) | |
qs = torch.trunc((blocks * id) + 8.5).clip(0, 15).to(torch.uint8) | |
qs = qs.reshape((n_blocks, 2, block_size // 2)) | |
qs = qs[:, 0, :] | (qs[:, 1, :] << 4) | |
d = d.to(torch.float16).view(torch.uint8) | |
return torch.cat([d, qs], dim=-1) | |
class Q4_1(__Quant, qtype=GGMLQuantizationType.Q4_1): | |
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
max = blocks.max(axis=-1, keepdims=True) | |
min = blocks.min(axis=-1, keepdims=True) | |
d = (max - min) / 15 | |
with np.errstate(divide="ignore"): | |
id = np.where(d == 0, 0, 1 / d) | |
qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15) | |
qs = qs.reshape((n_blocks, 2, cls.block_size // 2)) | |
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) | |
d = d.astype(np.float16).view(np.uint8) | |
m = min.astype(np.float16).view(np.uint8) | |
return np.concatenate([d, m, qs], axis=-1) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
m, qs = np.hsplit(rest, [2]) | |
d = d.view(np.float16).astype(np.float32) | |
m = m.view(np.float16).astype(np.float32) | |
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.float32) | |
return (d * qs) + m | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
n_blocks = blocks.shape[0] | |
d = blocks[:, :2].view(torch.float16) | |
m = blocks[:, 2:4].view(torch.float16) | |
qs = blocks[:, 4:] | |
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1) | |
qs = (qs & 0x0F).reshape(n_blocks, -1) | |
return (d * qs) + m | |
class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0): | |
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
imax = abs(blocks).argmax(axis=-1, keepdims=True) | |
max = np.take_along_axis(blocks, imax, axis=-1) | |
d = max / -16 | |
with np.errstate(divide="ignore"): | |
id = np.where(d == 0, 0, 1 / d) | |
# FIXME: Q5_0's reference rounding is cursed and depends on FMA | |
q = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31) | |
qs = q.reshape((n_blocks, 2, cls.block_size // 2)) | |
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4)) | |
qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4) | |
d = d.astype(np.float16).view(np.uint8) | |
return np.concatenate([d, qh, qs], axis=-1) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
qh, qs = np.hsplit(rest, [4]) | |
d = d.view(np.float16).astype(np.float32) | |
qh = qh.view(np.uint32) | |
qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32)) | |
ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
qh = (qh & np.uint32(0x01)).astype(np.uint8) | |
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1)) | |
qs = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(16) | |
return (d * qs.astype(np.float32)) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
def to_uint32(x): | |
# pytorch uint32 by City96 - Apache-2.0 | |
x = x.view(torch.uint8).to(torch.int32) | |
return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1) | |
n_blocks = blocks.shape[0] | |
d = blocks[:, :2] | |
qh = blocks[:, 2:6] | |
qs = blocks[:, 6:] | |
d = d.view(torch.float16).to(torch.float32) | |
qh = to_uint32(qh) | |
qh = qh.reshape(n_blocks, 1) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) | |
ql = qs.reshape(n_blocks, -1, 1, block_size // 2) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1) | |
qh = (qh & 1).to(torch.uint8) | |
ql = (ql & 0x0F).reshape(n_blocks, -1) | |
qs = (ql | (qh << 4)).to(torch.int8) - 16 | |
return d * qs | |
def quantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
# Copyright Forge 2024, AGPL V3 + CC-BY SA | |
n_blocks = blocks.shape[0] | |
imax = torch.abs(blocks).argmax(dim=-1, keepdim=True) | |
max_val = torch.gather(blocks, dim=-1, index=imax) | |
d = max_val / -16 | |
id = torch.where(d == 0, torch.tensor(0.0, device=d.device), 1.0 / d) | |
q = torch.trunc((blocks.float() * id.float()) + 16.5).clamp(0, 31).to(torch.uint8) | |
qs = q.view(n_blocks, 2, block_size // 2) | |
qs = (qs[..., 0, :] & 0x0F) | (qs[..., 1, :] << 4) | |
qh = q.view(n_blocks, 32) | |
qh_packed = torch.zeros((n_blocks, 4), dtype=torch.uint8, device=qh.device) | |
for i in range(4): | |
qh_packed[:, i] = ( | |
(qh[:, i * 8 + 0] >> 4) | | |
(qh[:, i * 8 + 1] >> 3 & 0x02) | | |
(qh[:, i * 8 + 2] >> 2 & 0x04) | | |
(qh[:, i * 8 + 3] >> 1 & 0x08) | | |
(qh[:, i * 8 + 4] << 0 & 0x10) | | |
(qh[:, i * 8 + 5] << 1 & 0x20) | | |
(qh[:, i * 8 + 6] << 2 & 0x40) | | |
(qh[:, i * 8 + 7] << 3 & 0x80) | |
) | |
d = d.to(torch.float16).view(torch.uint8) | |
return torch.cat([d, qh_packed, qs], dim=-1) | |
class Q5_1(__Quant, qtype=GGMLQuantizationType.Q5_1): | |
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
max = blocks.max(axis=-1, keepdims=True) | |
min = blocks.min(axis=-1, keepdims=True) | |
d = (max - min) / 31 | |
with np.errstate(divide="ignore"): | |
id = np.where(d == 0, 0, 1 / d) | |
q = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 31) | |
qs = q.reshape((n_blocks, 2, cls.block_size // 2)) | |
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4)) | |
qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4) | |
d = d.astype(np.float16).view(np.uint8) | |
m = min.astype(np.float16).view(np.uint8) | |
return np.concatenate([d, m, qh, qs], axis=-1) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
m, rest = np.hsplit(rest, [2]) | |
qh, qs = np.hsplit(rest, [4]) | |
d = d.view(np.float16).astype(np.float32) | |
m = m.view(np.float16).astype(np.float32) | |
qh = qh.view(np.uint32) | |
qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32)) | |
ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
qh = (qh & np.uint32(0x01)).astype(np.uint8) | |
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1)) | |
qs = (ql | (qh << np.uint8(4))).astype(np.float32) | |
return (d * qs) + m | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
def to_uint32(x): | |
# pytorch uint32 by City96 - Apache-2.0 | |
x = x.view(torch.uint8).to(torch.int32) | |
return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1) | |
n_blocks = blocks.shape[0] | |
d = blocks[:, :2].view(torch.float16) | |
m = blocks[:, 2:4].view(torch.float16) | |
qh = blocks[:, 4:8] | |
qs = blocks[:, 8:] | |
qh = to_uint32(qh) | |
qh = qh.reshape((n_blocks, 1)) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) | |
ql = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1) | |
qh = (qh & 1).to(torch.uint8) | |
ql = (ql & 0x0F).reshape((n_blocks, -1)) | |
qs = (ql | (qh << 4)) | |
return (d * qs) + m | |
class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0): | |
# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c | |
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
d = abs(blocks).max(axis=1, keepdims=True) / 127 | |
with np.errstate(divide="ignore"): | |
id = np.where(d == 0, 0, 1 / d) | |
qs = np_roundf(blocks * id) | |
# (n_blocks, 2) | |
d = d.astype(np.float16).view(np.uint8) | |
# (n_blocks, block_size) | |
qs = qs.astype(np.int8).view(np.uint8) | |
return np.concatenate([d, qs], axis=1) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
d, x = np.split(blocks, [2], axis=1) | |
d = d.view(np.float16).astype(np.float32) | |
x = x.view(np.int8).astype(np.float32) | |
return (x * d) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
d = blocks[:, :2].view(torch.float16) | |
x = blocks[:, 2:].view(torch.int8).to(torch.float16) | |
return x * d | |
def quantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
# Copyright Forge 2024, AGPL V3 + CC-BY SA | |
d = torch.abs(blocks).max(dim=1, keepdim=True).values / 127 | |
ids = torch.where(d == 0, torch.zeros_like(d), 1 / d) | |
qs = torch.round(blocks * ids) | |
d = d.to(torch.float16).view(torch.uint8) | |
qs = qs.to(torch.int8).view(torch.uint8) | |
return torch.cat([d, qs], dim=1) | |
class Q2_K(__Quant, qtype=GGMLQuantizationType.Q2_K): | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
scales, rest = np.hsplit(blocks, [QK_K // 16]) | |
qs, rest = np.hsplit(rest, [QK_K // 4]) | |
d, dmin = np.hsplit(rest, [2]) | |
d = d.view(np.float16).astype(np.float32) | |
dmin = dmin.view(np.float16).astype(np.float32) | |
# (n_blocks, 16, 1) | |
dl = (d * (scales & 0xF).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1)) | |
ml = (dmin * (scales >> 4).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1)) | |
shift = np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) | |
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & np.uint8(3) | |
qs = qs.reshape((n_blocks, QK_K // 16, 16)).astype(np.float32) | |
qs = dl * qs - ml | |
return qs.reshape((n_blocks, -1)) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) | |
n_blocks = blocks.shape[0] | |
scales, qs, d, dmin = quick_split(blocks, [QK_K // 16, QK_K // 4, 2]) | |
d = d.view(torch.float16) | |
dmin = dmin.view(torch.float16) | |
# (n_blocks, 16, 1) | |
dl = (d * (scales & 0xF)).reshape((n_blocks, QK_K // 16, 1)) | |
ml = (dmin * (scales >> 4)).reshape((n_blocks, QK_K // 16, 1)) | |
shift = torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1)) | |
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & 3 | |
qs = qs.reshape((n_blocks, QK_K // 16, 16)) | |
qs = dl * qs - ml | |
return qs.reshape((n_blocks, -1)) | |
class Q3_K(__Quant, qtype=GGMLQuantizationType.Q3_K): | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
hmask, rest = np.hsplit(blocks, [QK_K // 8]) | |
qs, rest = np.hsplit(rest, [QK_K // 4]) | |
scales, d = np.hsplit(rest, [12]) | |
d = d.view(np.float16).astype(np.float32) | |
# The scales are packed at 6-bit each in this pattern: | |
# 0: IIIIAAAA | |
# 1: JJJJBBBB | |
# 2: KKKKCCCC | |
# 3: LLLLDDDD | |
# 4: MMMMEEEE | |
# 5: NNNNFFFF | |
# 6: OOOOGGGG | |
# 7: PPPPHHHH | |
# 8: MMIIEEAA | |
# 9: NNJJFFBB | |
# 10: OOKKGGCC | |
# 11: PPLLHHDD | |
lscales, hscales = np.hsplit(scales, [8]) | |
lscales = lscales.reshape((n_blocks, 1, 8)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1)) | |
lscales = lscales.reshape((n_blocks, 16)) | |
hscales = hscales.reshape((n_blocks, 1, 4)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 4, 1)) | |
hscales = hscales.reshape((n_blocks, 16)) | |
scales = (lscales & np.uint8(0x0F)) | ((hscales & np.uint8(0x03)) << np.uint8(4)) | |
scales = (scales.astype(np.int8) - np.int8(32)).astype(np.float32) | |
dl = (d * scales).reshape((n_blocks, 16, 1)) | |
ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) | |
qh = hmask.reshape(n_blocks, -1, 1, 32) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1)) | |
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(3) | |
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(1)) | |
qh = qh ^ np.uint8(1) # strangely, the offset is zero when the bitmask is 1 | |
q = (ql.astype(np.int8) - (qh << np.uint8(2)).astype(np.int8)).astype(np.float32) | |
return (dl * q).reshape((n_blocks, QK_K)) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) | |
n_blocks = blocks.shape[0] | |
hmask, qs, scales, d = quick_split(blocks, [QK_K // 8, QK_K // 4, 12]) | |
d = d.view(torch.float16) | |
lscales, hscales = scales[:, :8], scales[:, 8:] | |
lscales = lscales.reshape((n_blocks, 1, 8)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 2, 1)) | |
lscales = lscales.reshape((n_blocks, 16)) | |
hscales = hscales.reshape((n_blocks, 1, 4)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 4, 1)) | |
hscales = hscales.reshape((n_blocks, 16)) | |
scales = (lscales & 0x0F) | ((hscales & 0x03) << 4) | |
scales = (scales.to(torch.int8) - 32) | |
dl = (d * scales).reshape((n_blocks, 16, 1)) | |
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1)) | |
qh = hmask.reshape(n_blocks, -1, 1, 32) >> torch.tensor([i for i in range(8)], device=d.device, dtype=torch.uint8).reshape((1, 1, 8, 1)) | |
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & 3 | |
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & 1) ^ 1 | |
q = (ql.to(torch.int8) - (qh << 2).to(torch.int8)) | |
return (dl * q).reshape((n_blocks, QK_K)) | |
class Q4_K(__Quant, qtype=GGMLQuantizationType.Q4_K): | |
K_SCALE_SIZE = 12 | |
def get_scale_min(scales: np.ndarray) -> tuple[np.ndarray, np.ndarray]: | |
n_blocks = scales.shape[0] | |
scales = scales.view(np.uint8) | |
### Unpacking the following: ### | |
# 0 EEAAAAAA | |
# 1 FFBBBBBB | |
# 2 GGCCCCCC | |
# 3 HHDDDDDD | |
# 4 eeaaaaaa | |
# 5 ffbbbbbb | |
# 6 ggcccccc | |
# 7 hhdddddd | |
# 8 eeeeEEEE | |
# 9 ffffFFFF | |
# 10 ggggGGGG | |
# 11 hhhhHHHH | |
scales = scales.reshape((n_blocks, 3, 4)) | |
d, m, m_d = np.split(scales, 3, axis=-2) | |
sc = np.concatenate([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], axis=-1) | |
min = np.concatenate([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], axis=-1) | |
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8))) | |
def get_scale_min_pytorch(scales): | |
n_blocks = scales.shape[0] | |
scales = scales.view(torch.uint8) | |
scales = scales.reshape((n_blocks, 3, 4)) | |
d, m, m_d = torch.split(scales, scales.shape[-2] // 3, dim=-2) | |
sc = torch.cat([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], dim=-1) | |
min = torch.cat([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], dim=-1) | |
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8))) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
dmin, rest = np.hsplit(rest, [2]) | |
scales, qs = np.hsplit(rest, [cls.K_SCALE_SIZE]) | |
d = d.view(np.float16).astype(np.float32) | |
dmin = dmin.view(np.float16).astype(np.float32) | |
sc, m = Q4_K.get_scale_min(scales) | |
d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1)) | |
dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1)) | |
qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 32)).astype(np.float32) | |
return (d * qs - dm).reshape((n_blocks, QK_K)) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) | |
QK_K = 256 | |
K_SCALE_SIZE = 12 | |
n_blocks = blocks.shape[0] | |
d, dmin, scales, qs = quick_split(blocks, [2, 2, K_SCALE_SIZE]) | |
d = d.view(torch.float16) | |
dmin = dmin.view(torch.float16) | |
sc, m = Q4_K.get_scale_min_pytorch(scales) | |
d = (d * sc).reshape((n_blocks, -1, 1)) | |
dm = (dmin * m).reshape((n_blocks, -1, 1)) | |
qs = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1)) | |
qs = (qs & 0x0F).reshape((n_blocks, -1, 32)) | |
return (d * qs - dm).reshape((n_blocks, QK_K)) | |
class Q5_K(__Quant, qtype=GGMLQuantizationType.Q5_K): | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
dmin, rest = np.hsplit(rest, [2]) | |
scales, rest = np.hsplit(rest, [Q4_K.K_SCALE_SIZE]) | |
qh, qs = np.hsplit(rest, [QK_K // 8]) | |
d = d.view(np.float16).astype(np.float32) | |
dmin = dmin.view(np.float16).astype(np.float32) | |
sc, m = Q4_K.get_scale_min(scales) | |
d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1)) | |
dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1)) | |
ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1)) | |
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32)) | |
qh = (qh & np.uint8(0x01)).reshape((n_blocks, -1, 32)) | |
q = (ql | (qh << np.uint8(4))).astype(np.float32) | |
return (d * q - dm).reshape((n_blocks, QK_K)) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) | |
QK_K = 256 | |
K_SCALE_SIZE = 12 | |
n_blocks = blocks.shape[0] | |
d, dmin, scales, qh, qs = quick_split(blocks, [2, 2, K_SCALE_SIZE, QK_K // 8]) | |
d = d.view(torch.float16) | |
dmin = dmin.view(torch.float16) | |
sc, m = Q4_K.get_scale_min_pytorch(scales) | |
d = (d * sc).reshape((n_blocks, -1, 1)) | |
dm = (dmin * m).reshape((n_blocks, -1, 1)) | |
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1)) | |
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([i for i in range(8)], device=d.device, dtype=torch.uint8).reshape((1, 1, 8, 1)) | |
ql = (ql & 0x0F).reshape((n_blocks, -1, 32)) | |
qh = (qh & 0x01).reshape((n_blocks, -1, 32)) | |
q = (ql | (qh << 4)) | |
return (d * q - dm).reshape((n_blocks, QK_K)) | |
class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K): | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
ql, rest = np.hsplit(blocks, [QK_K // 2]) | |
qh, rest = np.hsplit(rest, [QK_K // 4]) | |
scales, d = np.hsplit(rest, [QK_K // 16]) | |
scales = scales.view(np.int8).astype(np.float32) | |
d = d.view(np.float16).astype(np.float32) | |
d = (d * scales).reshape((n_blocks, QK_K // 16, 1)) | |
ql = ql.reshape((n_blocks, -1, 1, 64)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32)) | |
qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) | |
qh = (qh & np.uint8(0x03)).reshape((n_blocks, -1, 32)) | |
q = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(32) | |
q = q.reshape((n_blocks, QK_K // 16, -1)).astype(np.float32) | |
return (d * q).reshape((n_blocks, QK_K)) | |
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor: | |
# Written by ChatGPT | |
n_blocks = blocks.shape[0] | |
ql, qh, scales, d, = quick_split(blocks, [QK_K // 2, QK_K // 4, QK_K // 16]) | |
scales = scales.view(torch.int8) | |
d = d.view(torch.float16) | |
d = (d * scales).reshape((n_blocks, QK_K // 16, 1)) | |
ql = ql.reshape((n_blocks, -1, 1, 64)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1)) | |
ql = (ql & 0x0F).reshape((n_blocks, -1, 32)) | |
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1)) | |
qh = (qh & 0x03).reshape((n_blocks, -1, 32)) | |
q = (ql | (qh << 4)).to(torch.int8) - 32 | |
q = q.reshape((n_blocks, QK_K // 16, -1)) | |
return (d * q).reshape((n_blocks, QK_K)) | |
class IQ2_XXS(__Quant, qtype=GGMLQuantizationType.IQ2_XXS): | |
ksigns: bytes = ( | |
b"\x00\x81\x82\x03\x84\x05\x06\x87\x88\x09\x0a\x8b\x0c\x8d\x8e\x0f" | |
b"\x90\x11\x12\x93\x14\x95\x96\x17\x18\x99\x9a\x1b\x9c\x1d\x1e\x9f" | |
b"\xa0\x21\x22\xa3\x24\xa5\xa6\x27\x28\xa9\xaa\x2b\xac\x2d\x2e\xaf" | |
b"\x30\xb1\xb2\x33\xb4\x35\x36\xb7\xb8\x39\x3a\xbb\x3c\xbd\xbe\x3f" | |
b"\xc0\x41\x42\xc3\x44\xc5\xc6\x47\x48\xc9\xca\x4b\xcc\x4d\x4e\xcf" | |
b"\x50\xd1\xd2\x53\xd4\x55\x56\xd7\xd8\x59\x5a\xdb\x5c\xdd\xde\x5f" | |
b"\x60\xe1\xe2\x63\xe4\x65\x66\xe7\xe8\x69\x6a\xeb\x6c\xed\xee\x6f" | |
b"\xf0\x71\x72\xf3\x74\xf5\xf6\x77\x78\xf9\xfa\x7b\xfc\x7d\x7e\xff" | |
) | |
# iq2xxs_grid, but with each byte of the original packed in 2 bits, | |
# by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2. | |
grid_shape = (256, 8) | |
grid_map = (0x08, 0x19, 0x2b) | |
grid_hex = ( | |
b"00000200050008000a00110014002000220028002a0041004400500058006100" | |
b"6400800082008a00a20001010401100115014001840198010002020222028202" | |
b"010404041004210424044004420448046004810484049004a404000502050805" | |
b"200546056905800591050906100640068406a406000805080808140828084108" | |
b"440850085208880804094009020a140a01100410101021104010601084109010" | |
b"951000110811201150115a118011241245120014081420142514491480141815" | |
b"6215001616160118041810184018811800190519a019511a002002200a204420" | |
b"6120802082202921482100220222012404241024402456240025412564259026" | |
b"082820289428442a014004401040184021402440404048405640604081408440" | |
b"9040004120416141804185410142104248425642684200440844204480449944" | |
b"124524450046014804481048404845480049584961498249454a904a00500850" | |
b"1150195020508050885004514251a4519152905492540a550156545600581158" | |
b"195864584059085a046010604060686000615561186260620064056410651265" | |
b"84654268008002800a8041808280048118814081118201840484108415844084" | |
b"608400854685948509864086608602880489118a0490109024904090a1901691" | |
b"8091459200942294449451958198209902a050a085a009a100a218a450a804a9" | |
) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, qs = np.hsplit(blocks, [2]) | |
d = d.view(np.float16).astype(np.float32) | |
qs = qs.view(np.uint32).reshape(n_blocks, -1, 2) | |
db = d * (np.float32(0.5) + (qs[..., 1] >> 28).astype(np.float32)) * np.float32(0.25) | |
db = db.reshape((n_blocks, -1, 1, 1)) | |
# get the sign indices and unpack the bits | |
signs = qs[..., 1].reshape((n_blocks, -1, 1)) >> np.array([0, 7, 14, 21], dtype=np.uint32).reshape((1, 1, 4)) | |
ksigns = np.frombuffer(cls.ksigns, dtype=np.uint8).reshape((1, 1, 1, 128)) | |
signs = (signs & np.uint32(0x7F)).reshape((n_blocks, -1, 4, 1)) | |
signs = np.take_along_axis(ksigns, signs, axis=-1) | |
signs = signs.reshape((n_blocks, -1, 4, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 1, 8)) | |
signs = signs & np.uint8(0x01) | |
signs = np.where(signs == 0, np.float32(1), np.float32(-1)) | |
signs = signs.reshape((n_blocks, -1, 4, 8)) | |
assert cls.grid is not None | |
grid = np.take_along_axis(cls.grid, qs[..., 0].copy().view(np.uint8).reshape((n_blocks, -1, 1, 1)), axis=-2) | |
grid = grid.reshape((n_blocks, -1, 4, 8)) | |
return (db * grid * signs).reshape((n_blocks, -1)) | |
class IQ2_XS(__Quant, qtype=GGMLQuantizationType.IQ2_XS): | |
# iq2xs_grid, but with each byte of the original packed in 2 bits, | |
# by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2. | |
grid_shape = (512, 8) | |
grid_map = (0x08, 0x19, 0x2b) | |
grid_hex = ( | |
b"00000200050008000a0011001400160019002000220025002800410044004600" | |
b"49005000520055005800610064008000820085008800910094009900a0000101" | |
b"04010601090110011201150118011a0121012401400142014501480151015401" | |
b"6001680181018401900100020202050208021102140220024102440250025502" | |
b"80028a0201040404060409041004120415041804210424044004420445044804" | |
b"5104540456046004810484049004000502050505080511051405200541054405" | |
b"500561058005010604061006260640064206840600080208050808080a081108" | |
b"14082008250841084408500858088008a008aa08010904091009400981098909" | |
b"000a200a280a960aa00a01100410061009101010121015101810211024104010" | |
b"4210451048105110541060106a10811084109010001102110511081111111411" | |
b"2011411144115011801194119611011204120612101240126012001402140514" | |
b"0814111414142014411444144914501464148014011504151015401500161416" | |
b"49160118041810181218401854188618001905196619511aa91a002002200520" | |
b"08200a201120142020204120442050208020a020012104211021402148216521" | |
b"002222228022a82201240424102429244024002541255225992501261a26a626" | |
b"002808280a28202855288828a22868299029082a202a822a882a8a2a01400440" | |
b"0640094010401240154018402140244040404240454048404a40514054406040" | |
b"6540814084409040004102410541084111411441204141414441504180418541" | |
b"a241014204421042124229424042004402440544084411441444194420444144" | |
b"4444504480449444014504451045244540459a4500460a464446504601480448" | |
b"1048404845485448624800491149444950496949044a00500250055008501150" | |
b"145020502850415044505050805001510451105115514051425100524452aa52" | |
b"0154045410542154405460548154a154005508558055885521566856a1560058" | |
b"14584158505899581a5940594259855a0160046010604060546062608660a960" | |
b"006124624a62926200641664106540654565a46501686a682569066a546a626a" | |
b"00800280058008801180148020802a8041804480508080808280a880aa800181" | |
b"0481068110814081518159810082208280828282a082a8820184048410841284" | |
b"158440846084898400854485a58518866a860088088825885a8880888288a888" | |
b"0689228a808a888a968aa88a0190049010904090569084900091229164915692" | |
b"89920094059444945094589429959095929541965198a6984999159a609a00a0" | |
b"02a008a00aa020a02aa0a0a051a159a1a6a100a202a208a22aa280a2a0a240a4" | |
b"95a465a698a60aa820a822a828a8a0a8a8a804a984a986a928aa2aaa91aaaaaa" | |
) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
qs, scales = np.hsplit(rest, [2 * QK_K // 8]) | |
d = d.view(np.float16).astype(np.float32) | |
qs = qs.view(np.uint16) | |
scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) | |
scales = (scales & 0x0F).reshape((n_blocks, -1)) | |
db = d * (np.float32(0.5) + scales) * np.float32(0.25) | |
db = db.reshape((n_blocks, -1, 1, 1)) | |
# get the sign indices and unpack the bits | |
signs = np.frombuffer(IQ2_XXS.ksigns, dtype=np.uint8).reshape(1, 1, 128) | |
signs = np.take_along_axis(signs, (qs >> 9).reshape((n_blocks, -1, 1)), axis=-1) | |
signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8)) | |
signs = signs & np.uint8(0x01) | |
signs = np.where(signs == 0, np.float32(1), np.float32(-1)) | |
signs = signs.reshape((n_blocks, -1, 2, 8)) | |
assert cls.grid is not None | |
grid = np.take_along_axis(cls.grid, (qs & np.uint16(511)).reshape((n_blocks, -1, 1, 1)), axis=-2) | |
grid = grid.reshape((n_blocks, -1, 2, 8)) | |
return (db * grid * signs).reshape((n_blocks, -1)) | |
class IQ2_S(__Quant, qtype=GGMLQuantizationType.IQ2_S): | |
# iq2s_grid, but with each byte of the original packed in 2 bits, | |
# by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2. | |
grid_shape = (1024, 8) | |
grid_map = (0x08, 0x19, 0x2b) | |
grid_hex = ( | |
b"00000200050008000a0011001400160019002000220025002800410044004600" | |
b"490050005200550058006100640066006900800082008500880091009400a000" | |
b"a500aa0001010401060109011001120115011801210124014001420145014801" | |
b"510154015601590160016501680181018401900192019501a101a40100020202" | |
b"050208021102140220022a02410244024602490250025502800285028a029402" | |
b"a202010404040604090410041204150418042104240426042904400442044504" | |
b"48044a0451045404560459046004620465048104840486048904900495049804" | |
b"a104a40400050205050508050a05110514051605190520052505280541054405" | |
b"46054905500552055505580561056405800582058505880591059405a0050106" | |
b"0406060609061006150640064506480651065406600681068406900600080208" | |
b"050808081108140816081908200825082a084108440846084908500852085508" | |
b"580861086408800885089408aa08010904091009120915091809210940094509" | |
b"480951095409600981099009000a110a140a220a280a2a0a500a990a01100410" | |
b"0610091010101210151018102110241026104010421045104810511054105610" | |
b"59106010621065106810811084108610901095109810a110a410001102110511" | |
b"08110a1111111411161119112011221125112811411144114611491150115211" | |
b"5511581161116411801182118511881191119411011204120912101215122112" | |
b"2412401245125112541281128412901200140214051408141114141416141914" | |
b"2014251428144114441446144914501452145514581461146414801482148514" | |
b"881491149414a014011504150615091510151215151518152115241540154215" | |
b"4515481551155415601581158415901500160516081611161416201641164416" | |
b"50168016aa160118041806180918101815181818211840184218451848185118" | |
b"541860188118841800190219051908191119141920194119441950196919a219" | |
b"041a101a401a561a00200220052008201120142016201920202025202a204120" | |
b"4420502052205520642080208a209420aa200121042110211221152121214021" | |
b"4221452151215421602181218421902100220a22222228222a22442250228822" | |
b"8a22a82201240424062409241024152418242124242440244224452448245124" | |
b"5424602481248424902400250525082511251425202541254425502566258025" | |
b"0126042610264026592600280528112814284128442850288a28aa2801290429" | |
b"102995290a2a222a642a882a8a2a014004400640094010401240154018401a40" | |
b"21402440264040404240454048404a4051405440564059406040624065408140" | |
b"8440904095409840a140a4400041024105410841114114411641194120412241" | |
b"2541414144414641494150415241554158416141644180418241854188419141" | |
b"9441a04101420442104212421542184224424042454248425142544260428142" | |
b"844200440244054408440a441144144416441944204422442544284441444444" | |
b"46444944504452445544584461446444804482448544884491449444a0440145" | |
b"0445064509451045124515451845214524454045424545454845514554456045" | |
b"6a4581458445904500460246054608461146144620464146444650468046a546" | |
b"0148044809481048124815481848214824484048424845484848514854486048" | |
b"84489048004902490549084911491449204941494449504980499649014a044a" | |
b"104a404a00500250055008501150145016501950205022502550285041504450" | |
b"4650495050505250555058506150645080508250855088509150945001510451" | |
b"0651095110511251155118512151245140514251455148515151545160518151" | |
b"8451905100520552085211521452205241524452505269528052015404540654" | |
b"0954105412541554185421542454405442544554485451545454605481548454" | |
b"9054005502550555085511551455205541554455505580550156045610562656" | |
b"405600580258055808581158145820584158445850585a588058015904591059" | |
b"4059005a195a855aa85a01600460066010601260156018602160246040604560" | |
b"4860516054606060846090600061026105610861116114612061416144615061" | |
b"806199610462106240625662a162006405640864116414642064416444645064" | |
b"806401650465106540654a656865926500669466016804681068656898680069" | |
b"2a69426aa16a0080028005800880118014801980208025804180448050805280" | |
b"5580588061808080858091809480018104810981108112811581188121812481" | |
b"408142814581488151815481818184819081a981008205820a82118214824182" | |
b"4482508201840484068409841084128415841884218440844284458448845184" | |
b"5484608481848484908400850285058508851185148520854185448550858085" | |
b"8a85018604861086298640860088058811881488418844885088a28801890489" | |
b"40896589228a588a5a8a828aa28a019004900990109012901590189024904090" | |
b"4290459048905190549060908190849090900091059111911491419144915091" | |
b"5a910192049210924092a6920094029405940894119414942094419444945094" | |
b"8094969401950495109540959895a19500964696649601980498109826984098" | |
b"a998009949995299909a00a005a00aa014a022a02aa041a044a050a0a2a0aaa0" | |
b"40a165a102a20aa222a228a22aa282a288a28aa2a8a201a404a410a440a489a4" | |
b"a4a400a519a551a60aa828a8a2a854a986a908aa0aaa20aa22aa28aa88aaaaaa" | |
) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
qs, rest = np.hsplit(rest, [QK_K // 8]) | |
signs, rest = np.hsplit(rest, [QK_K // 8]) | |
qh, scales = np.hsplit(rest, [QK_K // 32]) | |
d = d.view(np.float16).astype(np.float32) | |
scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) | |
scales = (scales & 0x0F).reshape((n_blocks, -1)) | |
db = d * (np.float32(0.5) + scales) * np.float32(0.25) | |
db = db.reshape((n_blocks, -1, 1, 1)) | |
# unpack the sign bits | |
signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8)) | |
signs = signs & np.uint8(0x01) | |
signs = np.where(signs == 0, np.float32(1), np.float32(-1)) | |
signs = signs.reshape((n_blocks, -1, 2, 8)) | |
qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4)) | |
qs = qs.astype(np.uint16) | ((qh & 0x03).astype(np.uint16) << 8).reshape((n_blocks, -1)) | |
assert cls.grid is not None | |
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) | |
grid = grid.reshape((n_blocks, -1, 2, 8)) | |
return (db * grid * signs).reshape((n_blocks, -1)) | |
class IQ3_XXS(__Quant, qtype=GGMLQuantizationType.IQ3_XXS): | |
grid_shape = (256, 4) | |
grid_map = (0x04, 0x0c, 0x14, 0x1c, 0x24, 0x2c, 0x34, 0x3e) | |
grid_hex = ( | |
b"0000020004001100130017002000220031004200730075000101030110011201" | |
b"2101250130013201410154017001000202020402110220022202310233023702" | |
b"5102570275020103070310031203250370031304370444045704730475040105" | |
b"0705320552053506640610071407160743076107011003101010121021102310" | |
b"3010321034104710501000110211111120112211011203121012121221123012" | |
b"7212001302132013311346136613011405145014201524154615711505162217" | |
b"4017002002201120132020202220262031204220012103210521102112212121" | |
b"3021632167217021002202221122172220222222372240225522012310231423" | |
b"7023742335245324032527254125742501270327162745270130103012302130" | |
b"2330503065307230003102312031313144314631013203321032253252327232" | |
b"1133333330344734723400350635223555351436363663363337603704401740" | |
b"3540374053405740744120423742404260426642074345430444514464442545" | |
b"4345704505471047124730471250415070500051065126515551145232527252" | |
b"0253535310542354275472540255315550562457425724604460466064602161" | |
b"6161176264623063366344640565526533660367216703700570077010703270" | |
b"5270267140711272457252720073157333736073217441740075027524753076" | |
) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
qs, scales = np.hsplit(rest, [QK_K // 4]) | |
d = d.view(np.float16).astype(np.float32) | |
scales = scales.view(np.uint32) | |
db = d * (np.float32(0.5) + (scales >> 28).astype(np.float32)) * np.float32(0.5) | |
db = db.reshape((n_blocks, -1, 1, 1)) | |
# get the sign indices and unpack the bits | |
signs = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 7, 14, 21], dtype=np.uint32).reshape((1, 1, 4)) | |
ksigns = np.frombuffer(IQ2_XXS.ksigns, dtype=np.uint8).reshape((1, 1, 1, 128)) | |
signs = (signs & np.uint32(0x7F)).reshape((n_blocks, -1, 4, 1)) | |
signs = np.take_along_axis(ksigns, signs, axis=-1) | |
signs = signs.reshape((n_blocks, -1, 4, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 1, 8)) | |
signs = signs & np.uint8(0x01) | |
signs = np.where(signs == 0, np.float32(1), np.float32(-1)) | |
signs = signs.reshape((n_blocks, -1, 4, 8)) | |
assert cls.grid is not None | |
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) | |
grid = grid.reshape((n_blocks, -1, 4, 8)) | |
return (db * grid * signs).reshape((n_blocks, -1)) | |
class IQ3_S(__Quant, qtype=GGMLQuantizationType.IQ3_S): | |
grid_shape = (512, 4) | |
grid_map = (0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f) | |
grid_hex = ( | |
b"0000010002000500070010001100120014001600200021002500330040004200" | |
b"4500470051005300600062007100740077000001010102010401100111011501" | |
b"2001230127013101350144016101650172010002010205020702100213021602" | |
b"2102250230023402420245024702510253027002730203031103150320032203" | |
b"3103330336034403500352036703710375030004130417042104240432044004" | |
b"4304510470040205040520052205260533054105450547056605730506061106" | |
b"1306310652067106000702070407200722072607330750075407001001100210" | |
b"0410101011101310151017102010221031103410361054105610611072100011" | |
b"0111031106111011141121113011331141115011521170117611001212121512" | |
b"1712201224123212401243125512601272120113041307131013131321132713" | |
b"3013341341136213701303140514121414143114331442144614501454140115" | |
b"1015131521153015321551152016241627164416461601170317101712172117" | |
b"3517411762177017002001200320052007201020122014201620212023202720" | |
b"3020322041204320452050205220672070207320752000210221102113211721" | |
b"2221252131213421422151210122042207222122232230223722412253225722" | |
b"7122742200230223052311232223242331233323422350236623012407242024" | |
b"2324322435244124722475240425112522253725402553257025002602260726" | |
b"2126552661260527112726273027432750270230113013301530173022303130" | |
b"3330353042304430473051306330713001310331053114312131233140316031" | |
b"7231763100321232203232323432503201331033143321332333273330334133" | |
b"4333473355337333033411341634223431345234603464340135103512352535" | |
b"3235443556357335163641360137033720372237353700400440124020402440" | |
b"2740324041405040704002410741114113412241304135414341514155410142" | |
b"0342104215422142334240425742624270420443114313432043224331433543" | |
b"0044024424443744404471440545074521456245134634466046104715473047" | |
b"4347514702501050145022504050445047505250665074500151035105511251" | |
b"2151325172510052115223523052365253520253075310532753445351536553" | |
b"7353015404542054325446541255265551555355425602570457225711601360" | |
b"1560316033606060006120612761646112623462426255626262706200631463" | |
b"2163406325644364626400650365346560650566406611671367007004700770" | |
b"2070227036704070547062700271117124714371457101720472107216722172" | |
b"3072517202733273357353730174057413742074507422754275027631760077" | |
) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
qs, rest = np.hsplit(rest, [QK_K // 4]) | |
qh, rest = np.hsplit(rest, [QK_K // 32]) | |
signs, scales = np.hsplit(rest, [QK_K // 8]) | |
d = d.view(np.float16).astype(np.float32) | |
scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) | |
scales = (scales & 0x0F).reshape((n_blocks, -1)) | |
db = d * (1 + 2 * scales) | |
db = db.reshape((n_blocks, -1, 1, 1)) | |
# unpack the sign bits | |
signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8)) | |
signs = signs & np.uint8(0x01) | |
signs = np.where(signs == 0, np.float32(1), np.float32(-1)) | |
signs = signs.reshape((n_blocks, -1, 4, 8)) | |
qh = qh.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8) | |
qh = (qh & 0x01).astype(np.uint16).reshape((n_blocks, -1)) | |
qs = qs.astype(np.uint16) | (qh << 8) | |
assert cls.grid is not None | |
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) | |
grid = grid.reshape((n_blocks, -1, 4, 8)) | |
return (db * grid * signs).reshape((n_blocks, -1)) | |
class IQ1_S(__Quant, qtype=GGMLQuantizationType.IQ1_S): | |
# iq1s_grid, with each byte packed into 2 bits | |
# -1, 0, 1 <=> 0, 1, 2 | |
grid_shape = (2048, 8) | |
grid_map = (-1, 0, 1) | |
grid_hex = ( | |
b"00000200050008000a00110015002000220028002a0045005100540056006500" | |
b"8000820088008a009500a000a200a800aa000401050111011401160119011a01" | |
b"2501410146014901520155015a0161016401660168018501910194019601a501" | |
b"0002020208020a0215022002220228022a024502510259026402690280028202" | |
b"88028a02910295029902a002a202a802aa021104140416042504410449045504" | |
b"5a046404650491049904a5040105040505050605150518051a05290540054505" | |
b"4a0550055105540555055605590560056205650568056a058105910595059805" | |
b"9a05a105a405a505a605a9051406190641064406500652065506580660066106" | |
b"6606690685069106940699060008020808080a0815082008220828082a084508" | |
b"5108560865088008820888088a089508a008a208a808aa080509110914091909" | |
b"2409250941095009510955096109640969099109940996099909a509000a020a" | |
b"080a0a0a150a200a220a280a2a0a450a510a590a610a650a800a820a850a880a" | |
b"8a0a950aa00aa20aa80aaa0a1010111014101910241025104110441050105510" | |
b"58106110641065106910911094109610a110a510011104110611091110111211" | |
b"1511181121112411291145114a11501151115211541155115611591160116511" | |
b"841192119511a111a41111121412161225124012461249125212551258125a12" | |
b"641266128512911294129612a512011406140914141415141814191421142614" | |
b"41144514461448144a1451145414551456145914621465146814841489149014" | |
b"94149514981499149a14a114a414a514a914021505150a151115141515151615" | |
b"191520152215251528152a154115441545154615511552155415551556155915" | |
b"5a1561156415651566156915801582158415851588158a159015911594159515" | |
b"961599159a15a015a215a51501160416051606161516161618161a1621162616" | |
b"401642164416451648164a165116551656165816591661166416651668166916" | |
b"6a1686168a1692169516a416a916111816182518411844184618491850185518" | |
b"58185a1860186118641866186918851891189418a5181019121915191a192119" | |
b"25194219441945194819511954195519561959195a19601965196a1989199119" | |
b"921995199819a119a619a919091a161a241a261a441a461a491a501a521a551a" | |
b"581a611a661a691a851a911a961a9a1a0020022008200a201520202022202520" | |
b"28202a20452051205920612065208020822088208a209520a020a220a520a820" | |
b"aa2005211121142119212521422144214921552158215a216121642165216621" | |
b"8521902196219921a521012208220a22112215222022222228222a2245225122" | |
b"562259226522812288228a2291229522a022a222a822aa220524142416241924" | |
b"252444244524462449245224552458245a2466248524912494249924a124a524" | |
b"0925152521252925402545254825512554255525592562256525682589259025" | |
b"9425952598259a25a125a425a625a92505261026122619262526412649265526" | |
b"6026612669268426862690269a260028022808280a2815282028222828282a28" | |
b"45285128542865288028822888288a28a028a228a828aa280929112914291929" | |
b"2529462949295229552961296429662969298529902996299929a429a529002a" | |
b"022a082a0a2a202a222a282a2a2a452a512a562a592a652a802a822a882a8a2a" | |
b"952aa02aa22aa82aaa2a054011401640254049405240554058405a4061406440" | |
b"664094409940a140a6400041014104410641094112411541164118411a412141" | |
b"26412941454148414a41514154415541564159415a41654168416a4181418441" | |
b"8641904192419541a041a141a241054211421442164225424142524255425a42" | |
b"6442694289429442a5420144154419442944454448444a445144544455445644" | |
b"61446244654468446a44814486448944904492449544a044a144a94401450245" | |
b"05450a4511451445154516451945204525452a45414544454545464549455045" | |
b"5145544555455645584559456145644565456645694582458445854588459145" | |
b"94459545964599459a45a545a845aa450146054609461446154618461a462146" | |
b"2446294640464246454648465046514652465546564659466246654668468146" | |
b"85468a4694469546a146a446a6460548114815481a4825484248494850485548" | |
b"5848614864486648694885489148944896489948a5480149054906490a491049" | |
b"144915491849214924492649404945494a495149524954495549564959496049" | |
b"6249654966496a49864989499249954996499849a149a449a649a949164a444a" | |
b"464a494a554a584a5a4a644a694a944aa54a0150045005500650095012501550" | |
b"1a50215024502950405045504850515054505550565059506550685086508950" | |
b"95509850a050a150a650a9500551085109510a51115114511551165118511951" | |
b"20512551265128512a5141514451455146514951505151515251545155515651" | |
b"585159515a51615164516551665169518251855191519451955196519951a051" | |
b"a551aa5101520652125215521a5221522452425245524a525152545255525652" | |
b"595262526552855290529252955299529a52a452045405541154145415541654" | |
b"185419542154255428542a54415444544554465449544a545054515454545554" | |
b"5654585459545a54615462546454655466546954805488548a54915494549554" | |
b"96549954a154a454a554aa540155025504550555065509551055115512551455" | |
b"1555165519551a55215524552555265529554055415542554455455546554855" | |
b"4955505551555255545555555655585559555a55605561556455655566556855" | |
b"69556a5581558455855589558a559055915594559555965598559955a155a455" | |
b"a555a655a9550056015602560456065608560956115614561556185619562056" | |
b"2156225624562556265628562956415645564656485649564a56505651565256" | |
b"545655565656585659565a566156645665566956825685568656885689568a56" | |
b"915695569a56a256a556a656a856a95604580558065809581058155818582158" | |
b"2a58455848584a58515854585558565858585958605862586458655882588958" | |
b"9058925895589858a158a9580159025905590a59115914591559165919592559" | |
b"41594459455946594959505951595259545955595659585959595a5961596459" | |
b"655966596959815985598959915994599559965998599959a559045a085a155a" | |
b"1a5a205a255a265a295a455a485a495a515a555a565a585a595a625a655a685a" | |
b"6a5a815a8a5a925a955a965a985a9a5aa15a0560146016601960256044605060" | |
b"5560566058605a60616064606660696081609660a56001610461066109611261" | |
b"15612161226126612961456149615161556156615961656166616a6184618a61" | |
b"92619561a161a661a96111621662196240624162466255625662586260628562" | |
b"91629662a56211641264156416641a6421642664296440644264456448644a64" | |
b"516454645564566459645a646064626465648464856489649064926494649564" | |
b"966498649a64a164a464a964056508650a651165156516651965446545654665" | |
b"496550655165546555655665596561656465656566656965866589658a659165" | |
b"9565966599659a65a265a565a665a86502660966156620662666286629664066" | |
b"456648664a66516654665566566658665a666066656668668066826685668a66" | |
b"9466966698669966a066a466a666aa661668196825684168526855685a686168" | |
b"6968856891689868a66801690469106915692169246926692969406941694569" | |
b"4669486951695469556956695969606965696a69826984698a699569a169a469" | |
b"a569a969116a166a186a416a446a496a506a556a586a5a6a646a656a696a866a" | |
b"946a986a9a6aa66a0080028008800a802080228028802a804580508051805480" | |
b"5680598065808080828088808a809580a080a280a880aa800581118114811681" | |
b"1981258141814481498150815281558156815881598164816681698185818981" | |
b"948196819981a5810082028208820a8215822082228228822a82518254825982" | |
b"65828082828288828a829582a082a282a882aa82148419844184448451845584" | |
b"5a846184648469849484998401850985128515851a8526852985408541854585" | |
b"4885518554855585568559855a856585668568856a8581858485868589859085" | |
b"928595859885a68511861686198625864186448649864a865086558659865a86" | |
b"618666866a86858691869a86a4860088028808880a8815882088228828882a88" | |
b"41884588518854885988658869888088828888888a889588a088a288a888aa88" | |
b"05890689118914891689258941894489468949895089528955895a8961896489" | |
b"858996899989a589008a028a088a0a8a158a208a228a288a2a8a458a518a548a" | |
b"568a808a828a888a8a8a958aa08aa28aa88aaa8a059011901690189019902590" | |
b"419046904990559058905a9069906a9085909190949096909990a59001910491" | |
b"069109911091159118911a912191249126912991409145915091519154915591" | |
b"569159916291659184918691929195919891a191a491a691a991059211921492" | |
b"19922592449246924992509252925592589266926992859294929692a9920194" | |
b"04940694109415941894269440944a9451945494559456945894599460946194" | |
b"62946594849486949294949495949894a194a9940095059508950a9510951195" | |
b"14951595169519952195259529952a9541954495459546954995509551955295" | |
b"549555955695589559955a956195649565956695699581958595889591959295" | |
b"94959595969599959a95a095a295a595a895aa95019604961096159619962096" | |
b"2696299645964896499651965296559656965996659668968296849689968a96" | |
b"929694969596a496a696a9960598169819982598419846985098529855985698" | |
b"5a98649865988598919896989998a59804990699099910991299159918991a99" | |
b"209921992499269940994299459948994a995199549955995699599962996599" | |
b"66996a99819984999099929995999a99a199a699059a159a259a449a469a499a" | |
b"509a559a589a619a859a919a949a959a969a00a002a008a00aa015a020a022a0" | |
b"28a02aa045a051a054a056a059a080a082a088a08aa095a0a0a0a2a0a8a0aaa0" | |
b"05a109a111a114a116a119a11aa146a149a151a155a158a15aa161a164a185a1" | |
b"90a192a196a199a102a208a20aa210a219a222a228a22aa245a251a256a259a2" | |
b"65a280a282a288a28aa295a2a0a2a2a2a8a2aaa219a425a441a444a450a454a4" | |
b"55a458a45aa461a465a466a468a469a485a406a509a510a512a515a518a526a5" | |
b"29a542a545a551a554a555a556a559a565a56aa581a584a585a586a589a592a5" | |
b"95a598a505a611a616a61aa621a625a644a646a64aa652a655a656a658a660a6" | |
b"62a686a690a695a696a699a6a1a6a4a6a6a600a802a808a80aa820a822a828a8" | |
b"2aa851a854a856a859a880a882a888a88aa895a8a0a8a2a8a8a8aaa805a914a9" | |
b"19a921a925a941a950a955a95aa961a966a969a990a996a900aa02aa08aa0aaa" | |
b"20aa22aa28aa2aaa51aa54aa56aa80aa82aa88aa8aaa95aaa0aaa2aaa8aaaaaa" | |
) | |
delta = np.float32(0.125) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
qs, qh = np.hsplit(rest, [QK_K // 8]) | |
d = d.view(np.float16).astype(np.float32) | |
qh = qh.view(np.uint16) | |
dl = d * (2 * ((qh >> 12) & 7) + 1) | |
dl = dl.reshape((n_blocks, -1, 1, 1)) | |
delta = np.where((qh & np.uint16(0x8000)) == 0, cls.delta, -cls.delta) | |
delta = delta.reshape((n_blocks, -1, 1, 1)) | |
qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 3, 6, 9], dtype=np.uint16).reshape((1, 1, 4)) | |
qs = qs.astype(np.uint16) | ((qh & 7) << 8).reshape((n_blocks, -1)) | |
assert cls.grid is not None | |
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) | |
grid = grid.reshape((n_blocks, -1, 4, 8)) | |
return (dl * (grid + delta)).reshape((n_blocks, -1)) | |
class IQ1_M(__Quant, qtype=GGMLQuantizationType.IQ1_M): | |
grid_shape = IQ1_S.grid_shape | |
grid_map = IQ1_S.grid_map | |
grid_hex = IQ1_S.grid_hex | |
delta = IQ1_S.delta | |
# Okay *this* type is weird. It's the only one which stores the f16 scales in multiple parts. | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
qs, rest = np.hsplit(blocks, [QK_K // 8]) | |
qh, scales = np.hsplit(rest, [QK_K // 16]) | |
# The f16 scale is packed across multiple bytes | |
scales = scales.view(np.uint16) | |
d = (scales.reshape((n_blocks, 4)) & np.uint16(0xF000)) >> np.array([12, 8, 4, 0], dtype=np.uint16).reshape((1, 4)) | |
d = d[..., 0] | d[..., 1] | d[..., 2] | d[..., 3] | |
d = d.view(np.float16).astype(np.float32).reshape((n_blocks, 1)) | |
scales = scales.reshape(n_blocks, -1, 1) >> np.array([0, 3, 6, 9], dtype=np.uint16).reshape((1, 1, 4)) | |
scales = (scales & 0x07).reshape((n_blocks, -1)) | |
dl = d * (2 * scales + 1) | |
dl = dl.reshape((n_blocks, -1, 2, 1, 1)) | |
qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) | |
qs = qs.astype(np.uint16) | ((qh & 0x07).astype(np.uint16) << 8).reshape((n_blocks, -1)) | |
delta = np.where(qh & 0x08 == 0, cls.delta, -cls.delta) | |
delta = delta.reshape((n_blocks, -1, 2, 2, 1)) | |
assert cls.grid is not None | |
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2) | |
grid = grid.reshape((n_blocks, -1, 2, 2, 8)) | |
return (dl * (grid + delta)).reshape((n_blocks, -1)) | |
class IQ4_NL(__Quant, qtype=GGMLQuantizationType.IQ4_NL): | |
kvalues = (-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113) | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, qs = np.hsplit(blocks, [2]) | |
d = d.view(np.float16).astype(np.float32) | |
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 1)) | |
kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16) | |
qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1)) | |
return (d * qs) | |
class IQ4_XS(__Quant, qtype=GGMLQuantizationType.IQ4_XS): | |
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: | |
n_blocks = blocks.shape[0] | |
d, rest = np.hsplit(blocks, [2]) | |
scales_h, rest = np.hsplit(rest, [2]) | |
scales_l, qs = np.hsplit(rest, [QK_K // 64]) | |
d = d.view(np.float16).astype(np.float32) | |
scales_h = scales_h.view(np.uint16) | |
scales_l = scales_l.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) | |
scales_h = scales_h.reshape((n_blocks, 1, -1)) >> np.array([2 * i for i in range(QK_K // 32)], dtype=np.uint16).reshape((1, -1, 1)) | |
scales_l = scales_l.reshape((n_blocks, -1)) & np.uint8(0x0F) | |
scales_h = scales_h.reshape((n_blocks, -1)).astype(np.uint8) & np.uint8(0x03) | |
scales = (scales_l | (scales_h << np.uint8(4))).astype(np.int8) - np.int8(32) | |
dl = (d * scales.astype(np.float32)).reshape((n_blocks, -1, 1)) | |
qs = qs.reshape((n_blocks, -1, 1, 16)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) | |
qs = qs.reshape((n_blocks, -1, 32, 1)) & np.uint8(0x0F) | |
kvalues = np.array(IQ4_NL.kvalues, dtype=np.int8).reshape((1, 1, 1, -1)) | |
qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1, 32)) | |
return (dl * qs).reshape((n_blocks, -1)) | |