moistdio's picture
Upload folder using huggingface_hub
6831a54 verified
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Any, Callable, Sequence
from math import log2, ceil
import torch
from numpy.typing import DTypeLike
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType, QK_K
from .lazy import LazyNumpyTensor
import numpy as np
quick_split = lambda x, p: torch.split(x, p + [x.shape[1] - sum(p)], dim=1)
def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]:
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % block_size != 0:
raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)
def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]:
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)
# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
def _apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
rows = arr.reshape((-1, arr.shape[-1]))
osize = 1
for dim in oshape:
osize *= dim
out = np.empty(shape=osize, dtype=otype)
# compute over groups of 16 rows (arbitrary, but seems good for performance)
n_groups = (rows.shape[0] // 16) or 1
np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
return out.reshape(oshape)
# round away from zero
# ref: https://stackoverflow.com/a/59143326/22827863
def np_roundf(n: np.ndarray) -> np.ndarray:
a = abs(n)
floored = np.floor(a)
b = floored + np.floor(2 * (a - floored))
return np.sign(n) * b
class QuantError(Exception): ...
_type_traits: dict[GGMLQuantizationType, type[__Quant]] = {}
def quantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
if qtype == GGMLQuantizationType.F32:
return data.astype(np.float32, copy=False)
elif qtype == GGMLQuantizationType.F16:
return data.astype(np.float16, copy=False)
elif (q := _type_traits.get(qtype)) is not None:
return q.quantize(data)
else:
raise NotImplementedError(f"Quantization for {qtype.name} is not yet implemented")
def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
if qtype == GGMLQuantizationType.F32:
return data.view(np.float32)
elif qtype == GGMLQuantizationType.F16:
return data.view(np.float16).astype(np.float32)
elif (q := _type_traits.get(qtype)) is not None:
return q.dequantize(data)
else:
raise NotImplementedError(f"Dequantization for {qtype.name} is not yet implemented")
class __Quant(ABC):
qtype: GGMLQuantizationType
block_size: int
type_size: int
grid: np.ndarray[Any, np.dtype[np.float32]] | None = None
grid_shape: tuple[int, int] = (0, 0)
grid_map: tuple[int | float, ...] = ()
grid_hex: bytes | None = None
def __init__(self):
return TypeError("Quant conversion classes can't have instances")
def __init_subclass__(cls, qtype: GGMLQuantizationType) -> None:
cls.qtype = qtype
cls.block_size, cls.type_size = GGML_QUANT_SIZES[qtype]
cls.__quantize_lazy = LazyNumpyTensor._wrap_fn(
cls.__quantize_array,
meta_noop=(np.uint8, cls.__shape_to_bytes)
)
cls.__dequantize_lazy = LazyNumpyTensor._wrap_fn(
cls.__dequantize_array,
meta_noop=(np.float32, cls.__shape_from_bytes)
)
assert qtype not in _type_traits
_type_traits[qtype] = cls
@classmethod
def init_grid(cls):
if cls.grid is not None or cls.grid_hex is None:
return
bits_per_elem = ceil(log2(len(cls.grid_map)))
assert bits_per_elem != 0, cls.qtype.name
elems_per_byte = 8 // bits_per_elem
grid = np.frombuffer(cls.grid_hex, dtype=np.uint8)
# decode hexadecimal chars from grid
grid = grid.reshape((-1, 2))
grid = (np.where(grid > 0x40, grid + 9, grid) & 0x0F) << np.array([4, 0], dtype=np.uint8).reshape((1, 2))
grid = grid[..., 0] | grid[..., 1]
# unpack the grid values
grid = grid.reshape((-1, 1)) >> np.array([i for i in range(0, 8, 8 // elems_per_byte)], dtype=np.uint8).reshape((1, elems_per_byte))
grid = (grid & ((1 << bits_per_elem) - 1)).reshape((-1, 1))
grid_map = np.array(cls.grid_map, dtype=np.float32).reshape((1, -1))
grid = np.take_along_axis(grid_map, grid, axis=-1)
cls.grid = grid.reshape((1, 1, *cls.grid_shape))
@classmethod
def quantize_pytorch(cls, data: torch.Tensor, original_shape) -> torch.Tensor:
# Copyright Forge 2024, AGPL V3 + CC-BY SA
original_shape = [x for x in original_shape]
original_shape[-1] = -1
original_shape = tuple(original_shape)
block_size, type_size = GGML_QUANT_SIZES[cls.qtype]
blocks = data.reshape(-1, block_size)
blocks = cls.quantize_blocks_pytorch(blocks, block_size, type_size)
return blocks.reshape(original_shape)
@classmethod
def dequantize_pytorch(cls, data: torch.Tensor, original_shape) -> torch.Tensor:
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
block_size, type_size = GGML_QUANT_SIZES[cls.qtype]
rows = data.reshape((-1, data.shape[-1])).view(torch.uint8)
n_blocks = rows.numel() // type_size
blocks = rows.reshape((n_blocks, type_size))
blocks = cls.dequantize_blocks_pytorch(blocks, block_size, type_size)
return blocks.reshape(original_shape)
@classmethod
@abstractmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
raise NotImplementedError
@classmethod
@abstractmethod
def quantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
raise NotImplementedError('Low bit LoRA for this data type is not implemented yet. Please select "Automatic (fp16 LoRA)" in "Diffusion in Low Bits" (on the top line of this page) to use this LoRA.')
@classmethod
@abstractmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
raise NotImplementedError
@classmethod
@abstractmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
raise NotImplementedError
@classmethod
def quantize_rows(cls, rows: np.ndarray) -> np.ndarray:
rows = rows.astype(np.float32, copy=False)
shape = rows.shape
n_blocks = rows.size // cls.block_size
blocks = rows.reshape((n_blocks, cls.block_size))
blocks = cls.quantize_blocks(blocks)
assert blocks.dtype == np.uint8
assert blocks.shape[-1] == cls.type_size
return blocks.reshape(cls.__shape_to_bytes(shape))
@classmethod
def dequantize_rows(cls, rows: np.ndarray) -> np.ndarray:
rows = rows.view(np.uint8)
shape = rows.shape
n_blocks = rows.size // cls.type_size
blocks = rows.reshape((n_blocks, cls.type_size))
blocks = cls.dequantize_blocks(blocks)
assert blocks.dtype == np.float32
assert blocks.shape[-1] == cls.block_size
return blocks.reshape(cls.__shape_from_bytes(shape))
@classmethod
def __shape_to_bytes(cls, shape: Sequence[int]):
return quant_shape_to_byte_shape(shape, cls.qtype)
@classmethod
def __shape_from_bytes(cls, shape: Sequence[int]):
return quant_shape_from_byte_shape(shape, cls.qtype)
@classmethod
def __quantize_array(cls, array: np.ndarray) -> np.ndarray:
return _apply_over_grouped_rows(cls.quantize_rows, arr=array, otype=np.uint8, oshape=cls.__shape_to_bytes(array.shape))
@classmethod
def __dequantize_array(cls, array: np.ndarray) -> np.ndarray:
cls.init_grid()
return _apply_over_grouped_rows(cls.dequantize_rows, arr=array, otype=np.float32, oshape=cls.__shape_from_bytes(array.shape))
@classmethod
def __quantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any:
pass
@classmethod
def __dequantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any:
pass
@classmethod
def can_quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> bool:
return tensor.shape[-1] % cls.block_size == 0
@classmethod
def quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray:
if not cls.can_quantize(tensor):
raise QuantError(f"Can't quantize tensor with shape {tensor.shape} to {cls.qtype.name}")
if isinstance(tensor, LazyNumpyTensor):
return cls.__quantize_lazy(tensor)
else:
return cls.__quantize_array(tensor)
@classmethod
def dequantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray:
if isinstance(tensor, LazyNumpyTensor):
return cls.__dequantize_lazy(tensor)
else:
return cls.__dequantize_array(tensor)
class BF16(__Quant, qtype=GGMLQuantizationType.BF16):
@classmethod
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n = blocks.view(np.uint32)
# force nan to quiet
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n)
# round to nearest even
n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16
return n.astype(np.uint16).view(np.uint8)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32)
class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0):
@classmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
imax = abs(blocks).argmax(axis=-1, keepdims=True)
max = np.take_along_axis(blocks, imax, axis=-1)
d = max / -8
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
# FIXME: Q4_0's reference rounding is cursed and depends on FMA
qs = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
d = d.astype(np.float16).view(np.uint8)
return np.concatenate([d, qs], axis=-1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, qs = np.hsplit(blocks, [2])
d = d.view(np.float16).astype(np.float32)
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.int8) - np.int8(8)
return (d * qs.astype(np.float32))
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
n_blocks = blocks.shape[0]
d = blocks[:, :2].view(torch.float16)
qs = blocks[:, 2:]
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8
return d * qs
@classmethod
def quantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
# Copyright Forge 2024, AGPL V3 + CC-BY SA
n_blocks = blocks.shape[0]
imax = torch.abs(blocks).argmax(dim=-1, keepdim=True)
max_vals = torch.gather(blocks, -1, imax)
d = max_vals / -8
id = torch.where(d == 0, torch.tensor(0.0, device=d.device), 1.0 / d)
qs = torch.trunc((blocks * id) + 8.5).clip(0, 15).to(torch.uint8)
qs = qs.reshape((n_blocks, 2, block_size // 2))
qs = qs[:, 0, :] | (qs[:, 1, :] << 4)
d = d.to(torch.float16).view(torch.uint8)
return torch.cat([d, qs], dim=-1)
class Q4_1(__Quant, qtype=GGMLQuantizationType.Q4_1):
@classmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
max = blocks.max(axis=-1, keepdims=True)
min = blocks.min(axis=-1, keepdims=True)
d = (max - min) / 15
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
d = d.astype(np.float16).view(np.uint8)
m = min.astype(np.float16).view(np.uint8)
return np.concatenate([d, m, qs], axis=-1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
m, qs = np.hsplit(rest, [2])
d = d.view(np.float16).astype(np.float32)
m = m.view(np.float16).astype(np.float32)
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.float32)
return (d * qs) + m
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
n_blocks = blocks.shape[0]
d = blocks[:, :2].view(torch.float16)
m = blocks[:, 2:4].view(torch.float16)
qs = blocks[:, 4:]
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1)
qs = (qs & 0x0F).reshape(n_blocks, -1)
return (d * qs) + m
class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0):
@classmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
imax = abs(blocks).argmax(axis=-1, keepdims=True)
max = np.take_along_axis(blocks, imax, axis=-1)
d = max / -16
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
# FIXME: Q5_0's reference rounding is cursed and depends on FMA
q = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
qs = q.reshape((n_blocks, 2, cls.block_size // 2))
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4)
d = d.astype(np.float16).view(np.uint8)
return np.concatenate([d, qh, qs], axis=-1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
qh, qs = np.hsplit(rest, [4])
d = d.view(np.float16).astype(np.float32)
qh = qh.view(np.uint32)
qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32))
ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qh = (qh & np.uint32(0x01)).astype(np.uint8)
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1))
qs = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(16)
return (d * qs.astype(np.float32))
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
def to_uint32(x):
# pytorch uint32 by City96 - Apache-2.0
x = x.view(torch.uint8).to(torch.int32)
return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1)
n_blocks = blocks.shape[0]
d = blocks[:, :2]
qh = blocks[:, 2:6]
qs = blocks[:, 6:]
d = d.view(torch.float16).to(torch.float32)
qh = to_uint32(qh)
qh = qh.reshape(n_blocks, 1) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32)
ql = qs.reshape(n_blocks, -1, 1, block_size // 2) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1)
qh = (qh & 1).to(torch.uint8)
ql = (ql & 0x0F).reshape(n_blocks, -1)
qs = (ql | (qh << 4)).to(torch.int8) - 16
return d * qs
@classmethod
def quantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
# Copyright Forge 2024, AGPL V3 + CC-BY SA
n_blocks = blocks.shape[0]
imax = torch.abs(blocks).argmax(dim=-1, keepdim=True)
max_val = torch.gather(blocks, dim=-1, index=imax)
d = max_val / -16
id = torch.where(d == 0, torch.tensor(0.0, device=d.device), 1.0 / d)
q = torch.trunc((blocks.float() * id.float()) + 16.5).clamp(0, 31).to(torch.uint8)
qs = q.view(n_blocks, 2, block_size // 2)
qs = (qs[..., 0, :] & 0x0F) | (qs[..., 1, :] << 4)
qh = q.view(n_blocks, 32)
qh_packed = torch.zeros((n_blocks, 4), dtype=torch.uint8, device=qh.device)
for i in range(4):
qh_packed[:, i] = (
(qh[:, i * 8 + 0] >> 4) |
(qh[:, i * 8 + 1] >> 3 & 0x02) |
(qh[:, i * 8 + 2] >> 2 & 0x04) |
(qh[:, i * 8 + 3] >> 1 & 0x08) |
(qh[:, i * 8 + 4] << 0 & 0x10) |
(qh[:, i * 8 + 5] << 1 & 0x20) |
(qh[:, i * 8 + 6] << 2 & 0x40) |
(qh[:, i * 8 + 7] << 3 & 0x80)
)
d = d.to(torch.float16).view(torch.uint8)
return torch.cat([d, qh_packed, qs], dim=-1)
class Q5_1(__Quant, qtype=GGMLQuantizationType.Q5_1):
@classmethod
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
max = blocks.max(axis=-1, keepdims=True)
min = blocks.min(axis=-1, keepdims=True)
d = (max - min) / 31
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
q = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
qs = q.reshape((n_blocks, 2, cls.block_size // 2))
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4)
d = d.astype(np.float16).view(np.uint8)
m = min.astype(np.float16).view(np.uint8)
return np.concatenate([d, m, qh, qs], axis=-1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
m, rest = np.hsplit(rest, [2])
qh, qs = np.hsplit(rest, [4])
d = d.view(np.float16).astype(np.float32)
m = m.view(np.float16).astype(np.float32)
qh = qh.view(np.uint32)
qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32))
ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qh = (qh & np.uint32(0x01)).astype(np.uint8)
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1))
qs = (ql | (qh << np.uint8(4))).astype(np.float32)
return (d * qs) + m
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
def to_uint32(x):
# pytorch uint32 by City96 - Apache-2.0
x = x.view(torch.uint8).to(torch.int32)
return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1)
n_blocks = blocks.shape[0]
d = blocks[:, :2].view(torch.float16)
m = blocks[:, 2:4].view(torch.float16)
qh = blocks[:, 4:8]
qs = blocks[:, 8:]
qh = to_uint32(qh)
qh = qh.reshape((n_blocks, 1)) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32)
ql = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape(1, 1, 2, 1)
qh = (qh & 1).to(torch.uint8)
ql = (ql & 0x0F).reshape((n_blocks, -1))
qs = (ql | (qh << 4))
return (d * qs) + m
class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0):
@classmethod
# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
d = abs(blocks).max(axis=1, keepdims=True) / 127
with np.errstate(divide="ignore"):
id = np.where(d == 0, 0, 1 / d)
qs = np_roundf(blocks * id)
# (n_blocks, 2)
d = d.astype(np.float16).view(np.uint8)
# (n_blocks, block_size)
qs = qs.astype(np.int8).view(np.uint8)
return np.concatenate([d, qs], axis=1)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
d, x = np.split(blocks, [2], axis=1)
d = d.view(np.float16).astype(np.float32)
x = x.view(np.int8).astype(np.float32)
return (x * d)
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
d = blocks[:, :2].view(torch.float16)
x = blocks[:, 2:].view(torch.int8).to(torch.float16)
return x * d
@classmethod
def quantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
# Copyright Forge 2024, AGPL V3 + CC-BY SA
d = torch.abs(blocks).max(dim=1, keepdim=True).values / 127
ids = torch.where(d == 0, torch.zeros_like(d), 1 / d)
qs = torch.round(blocks * ids)
d = d.to(torch.float16).view(torch.uint8)
qs = qs.to(torch.int8).view(torch.uint8)
return torch.cat([d, qs], dim=1)
class Q2_K(__Quant, qtype=GGMLQuantizationType.Q2_K):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
scales, rest = np.hsplit(blocks, [QK_K // 16])
qs, rest = np.hsplit(rest, [QK_K // 4])
d, dmin = np.hsplit(rest, [2])
d = d.view(np.float16).astype(np.float32)
dmin = dmin.view(np.float16).astype(np.float32)
# (n_blocks, 16, 1)
dl = (d * (scales & 0xF).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1))
ml = (dmin * (scales >> 4).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1))
shift = np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & np.uint8(3)
qs = qs.reshape((n_blocks, QK_K // 16, 16)).astype(np.float32)
qs = dl * qs - ml
return qs.reshape((n_blocks, -1))
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
n_blocks = blocks.shape[0]
scales, qs, d, dmin = quick_split(blocks, [QK_K // 16, QK_K // 4, 2])
d = d.view(torch.float16)
dmin = dmin.view(torch.float16)
# (n_blocks, 16, 1)
dl = (d * (scales & 0xF)).reshape((n_blocks, QK_K // 16, 1))
ml = (dmin * (scales >> 4)).reshape((n_blocks, QK_K // 16, 1))
shift = torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1))
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & 3
qs = qs.reshape((n_blocks, QK_K // 16, 16))
qs = dl * qs - ml
return qs.reshape((n_blocks, -1))
class Q3_K(__Quant, qtype=GGMLQuantizationType.Q3_K):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
hmask, rest = np.hsplit(blocks, [QK_K // 8])
qs, rest = np.hsplit(rest, [QK_K // 4])
scales, d = np.hsplit(rest, [12])
d = d.view(np.float16).astype(np.float32)
# The scales are packed at 6-bit each in this pattern:
# 0: IIIIAAAA
# 1: JJJJBBBB
# 2: KKKKCCCC
# 3: LLLLDDDD
# 4: MMMMEEEE
# 5: NNNNFFFF
# 6: OOOOGGGG
# 7: PPPPHHHH
# 8: MMIIEEAA
# 9: NNJJFFBB
# 10: OOKKGGCC
# 11: PPLLHHDD
lscales, hscales = np.hsplit(scales, [8])
lscales = lscales.reshape((n_blocks, 1, 8)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1))
lscales = lscales.reshape((n_blocks, 16))
hscales = hscales.reshape((n_blocks, 1, 4)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 4, 1))
hscales = hscales.reshape((n_blocks, 16))
scales = (lscales & np.uint8(0x0F)) | ((hscales & np.uint8(0x03)) << np.uint8(4))
scales = (scales.astype(np.int8) - np.int8(32)).astype(np.float32)
dl = (d * scales).reshape((n_blocks, 16, 1))
ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
qh = hmask.reshape(n_blocks, -1, 1, 32) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1))
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(3)
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(1))
qh = qh ^ np.uint8(1) # strangely, the offset is zero when the bitmask is 1
q = (ql.astype(np.int8) - (qh << np.uint8(2)).astype(np.int8)).astype(np.float32)
return (dl * q).reshape((n_blocks, QK_K))
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
n_blocks = blocks.shape[0]
hmask, qs, scales, d = quick_split(blocks, [QK_K // 8, QK_K // 4, 12])
d = d.view(torch.float16)
lscales, hscales = scales[:, :8], scales[:, 8:]
lscales = lscales.reshape((n_blocks, 1, 8)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 2, 1))
lscales = lscales.reshape((n_blocks, 16))
hscales = hscales.reshape((n_blocks, 1, 4)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 4, 1))
hscales = hscales.reshape((n_blocks, 16))
scales = (lscales & 0x0F) | ((hscales & 0x03) << 4)
scales = (scales.to(torch.int8) - 32)
dl = (d * scales).reshape((n_blocks, 16, 1))
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1))
qh = hmask.reshape(n_blocks, -1, 1, 32) >> torch.tensor([i for i in range(8)], device=d.device, dtype=torch.uint8).reshape((1, 1, 8, 1))
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & 3
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & 1) ^ 1
q = (ql.to(torch.int8) - (qh << 2).to(torch.int8))
return (dl * q).reshape((n_blocks, QK_K))
class Q4_K(__Quant, qtype=GGMLQuantizationType.Q4_K):
K_SCALE_SIZE = 12
@staticmethod
def get_scale_min(scales: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
n_blocks = scales.shape[0]
scales = scales.view(np.uint8)
### Unpacking the following: ###
# 0 EEAAAAAA
# 1 FFBBBBBB
# 2 GGCCCCCC
# 3 HHDDDDDD
# 4 eeaaaaaa
# 5 ffbbbbbb
# 6 ggcccccc
# 7 hhdddddd
# 8 eeeeEEEE
# 9 ffffFFFF
# 10 ggggGGGG
# 11 hhhhHHHH
scales = scales.reshape((n_blocks, 3, 4))
d, m, m_d = np.split(scales, 3, axis=-2)
sc = np.concatenate([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], axis=-1)
min = np.concatenate([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], axis=-1)
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8)))
@staticmethod
def get_scale_min_pytorch(scales):
n_blocks = scales.shape[0]
scales = scales.view(torch.uint8)
scales = scales.reshape((n_blocks, 3, 4))
d, m, m_d = torch.split(scales, scales.shape[-2] // 3, dim=-2)
sc = torch.cat([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], dim=-1)
min = torch.cat([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], dim=-1)
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8)))
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
dmin, rest = np.hsplit(rest, [2])
scales, qs = np.hsplit(rest, [cls.K_SCALE_SIZE])
d = d.view(np.float16).astype(np.float32)
dmin = dmin.view(np.float16).astype(np.float32)
sc, m = Q4_K.get_scale_min(scales)
d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1))
dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1))
qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 32)).astype(np.float32)
return (d * qs - dm).reshape((n_blocks, QK_K))
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
QK_K = 256
K_SCALE_SIZE = 12
n_blocks = blocks.shape[0]
d, dmin, scales, qs = quick_split(blocks, [2, 2, K_SCALE_SIZE])
d = d.view(torch.float16)
dmin = dmin.view(torch.float16)
sc, m = Q4_K.get_scale_min_pytorch(scales)
d = (d * sc).reshape((n_blocks, -1, 1))
dm = (dmin * m).reshape((n_blocks, -1, 1))
qs = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
qs = (qs & 0x0F).reshape((n_blocks, -1, 32))
return (d * qs - dm).reshape((n_blocks, QK_K))
class Q5_K(__Quant, qtype=GGMLQuantizationType.Q5_K):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
dmin, rest = np.hsplit(rest, [2])
scales, rest = np.hsplit(rest, [Q4_K.K_SCALE_SIZE])
qh, qs = np.hsplit(rest, [QK_K // 8])
d = d.view(np.float16).astype(np.float32)
dmin = dmin.view(np.float16).astype(np.float32)
sc, m = Q4_K.get_scale_min(scales)
d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1))
dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1))
ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1))
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32))
qh = (qh & np.uint8(0x01)).reshape((n_blocks, -1, 32))
q = (ql | (qh << np.uint8(4))).astype(np.float32)
return (d * q - dm).reshape((n_blocks, QK_K))
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
QK_K = 256
K_SCALE_SIZE = 12
n_blocks = blocks.shape[0]
d, dmin, scales, qh, qs = quick_split(blocks, [2, 2, K_SCALE_SIZE, QK_K // 8])
d = d.view(torch.float16)
dmin = dmin.view(torch.float16)
sc, m = Q4_K.get_scale_min_pytorch(scales)
d = (d * sc).reshape((n_blocks, -1, 1))
dm = (dmin * m).reshape((n_blocks, -1, 1))
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([i for i in range(8)], device=d.device, dtype=torch.uint8).reshape((1, 1, 8, 1))
ql = (ql & 0x0F).reshape((n_blocks, -1, 32))
qh = (qh & 0x01).reshape((n_blocks, -1, 32))
q = (ql | (qh << 4))
return (d * q - dm).reshape((n_blocks, QK_K))
class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
ql, rest = np.hsplit(blocks, [QK_K // 2])
qh, rest = np.hsplit(rest, [QK_K // 4])
scales, d = np.hsplit(rest, [QK_K // 16])
scales = scales.view(np.int8).astype(np.float32)
d = d.view(np.float16).astype(np.float32)
d = (d * scales).reshape((n_blocks, QK_K // 16, 1))
ql = ql.reshape((n_blocks, -1, 1, 64)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32))
qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
qh = (qh & np.uint8(0x03)).reshape((n_blocks, -1, 32))
q = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(32)
q = q.reshape((n_blocks, QK_K // 16, -1)).astype(np.float32)
return (d * q).reshape((n_blocks, QK_K))
@classmethod
def dequantize_blocks_pytorch(cls, blocks, block_size, type_size) -> torch.Tensor:
# Written by ChatGPT
n_blocks = blocks.shape[0]
ql, qh, scales, d, = quick_split(blocks, [QK_K // 2, QK_K // 4, QK_K // 16])
scales = scales.view(torch.int8)
d = d.view(torch.float16)
d = (d * scales).reshape((n_blocks, QK_K // 16, 1))
ql = ql.reshape((n_blocks, -1, 1, 64)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape((1, 1, 2, 1))
ql = (ql & 0x0F).reshape((n_blocks, -1, 32))
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1))
qh = (qh & 0x03).reshape((n_blocks, -1, 32))
q = (ql | (qh << 4)).to(torch.int8) - 32
q = q.reshape((n_blocks, QK_K // 16, -1))
return (d * q).reshape((n_blocks, QK_K))
class IQ2_XXS(__Quant, qtype=GGMLQuantizationType.IQ2_XXS):
ksigns: bytes = (
b"\x00\x81\x82\x03\x84\x05\x06\x87\x88\x09\x0a\x8b\x0c\x8d\x8e\x0f"
b"\x90\x11\x12\x93\x14\x95\x96\x17\x18\x99\x9a\x1b\x9c\x1d\x1e\x9f"
b"\xa0\x21\x22\xa3\x24\xa5\xa6\x27\x28\xa9\xaa\x2b\xac\x2d\x2e\xaf"
b"\x30\xb1\xb2\x33\xb4\x35\x36\xb7\xb8\x39\x3a\xbb\x3c\xbd\xbe\x3f"
b"\xc0\x41\x42\xc3\x44\xc5\xc6\x47\x48\xc9\xca\x4b\xcc\x4d\x4e\xcf"
b"\x50\xd1\xd2\x53\xd4\x55\x56\xd7\xd8\x59\x5a\xdb\x5c\xdd\xde\x5f"
b"\x60\xe1\xe2\x63\xe4\x65\x66\xe7\xe8\x69\x6a\xeb\x6c\xed\xee\x6f"
b"\xf0\x71\x72\xf3\x74\xf5\xf6\x77\x78\xf9\xfa\x7b\xfc\x7d\x7e\xff"
)
# iq2xxs_grid, but with each byte of the original packed in 2 bits,
# by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2.
grid_shape = (256, 8)
grid_map = (0x08, 0x19, 0x2b)
grid_hex = (
b"00000200050008000a00110014002000220028002a0041004400500058006100"
b"6400800082008a00a20001010401100115014001840198010002020222028202"
b"010404041004210424044004420448046004810484049004a404000502050805"
b"200546056905800591050906100640068406a406000805080808140828084108"
b"440850085208880804094009020a140a01100410101021104010601084109010"
b"951000110811201150115a118011241245120014081420142514491480141815"
b"6215001616160118041810184018811800190519a019511a002002200a204420"
b"6120802082202921482100220222012404241024402456240025412564259026"
b"082820289428442a014004401040184021402440404048405640604081408440"
b"9040004120416141804185410142104248425642684200440844204480449944"
b"124524450046014804481048404845480049584961498249454a904a00500850"
b"1150195020508050885004514251a4519152905492540a550156545600581158"
b"195864584059085a046010604060686000615561186260620064056410651265"
b"84654268008002800a8041808280048118814081118201840484108415844084"
b"608400854685948509864086608602880489118a0490109024904090a1901691"
b"8091459200942294449451958198209902a050a085a009a100a218a450a804a9"
)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, qs = np.hsplit(blocks, [2])
d = d.view(np.float16).astype(np.float32)
qs = qs.view(np.uint32).reshape(n_blocks, -1, 2)
db = d * (np.float32(0.5) + (qs[..., 1] >> 28).astype(np.float32)) * np.float32(0.25)
db = db.reshape((n_blocks, -1, 1, 1))
# get the sign indices and unpack the bits
signs = qs[..., 1].reshape((n_blocks, -1, 1)) >> np.array([0, 7, 14, 21], dtype=np.uint32).reshape((1, 1, 4))
ksigns = np.frombuffer(cls.ksigns, dtype=np.uint8).reshape((1, 1, 1, 128))
signs = (signs & np.uint32(0x7F)).reshape((n_blocks, -1, 4, 1))
signs = np.take_along_axis(ksigns, signs, axis=-1)
signs = signs.reshape((n_blocks, -1, 4, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 1, 8))
signs = signs & np.uint8(0x01)
signs = np.where(signs == 0, np.float32(1), np.float32(-1))
signs = signs.reshape((n_blocks, -1, 4, 8))
assert cls.grid is not None
grid = np.take_along_axis(cls.grid, qs[..., 0].copy().view(np.uint8).reshape((n_blocks, -1, 1, 1)), axis=-2)
grid = grid.reshape((n_blocks, -1, 4, 8))
return (db * grid * signs).reshape((n_blocks, -1))
class IQ2_XS(__Quant, qtype=GGMLQuantizationType.IQ2_XS):
# iq2xs_grid, but with each byte of the original packed in 2 bits,
# by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2.
grid_shape = (512, 8)
grid_map = (0x08, 0x19, 0x2b)
grid_hex = (
b"00000200050008000a0011001400160019002000220025002800410044004600"
b"49005000520055005800610064008000820085008800910094009900a0000101"
b"04010601090110011201150118011a0121012401400142014501480151015401"
b"6001680181018401900100020202050208021102140220024102440250025502"
b"80028a0201040404060409041004120415041804210424044004420445044804"
b"5104540456046004810484049004000502050505080511051405200541054405"
b"500561058005010604061006260640064206840600080208050808080a081108"
b"14082008250841084408500858088008a008aa08010904091009400981098909"
b"000a200a280a960aa00a01100410061009101010121015101810211024104010"
b"4210451048105110541060106a10811084109010001102110511081111111411"
b"2011411144115011801194119611011204120612101240126012001402140514"
b"0814111414142014411444144914501464148014011504151015401500161416"
b"49160118041810181218401854188618001905196619511aa91a002002200520"
b"08200a201120142020204120442050208020a020012104211021402148216521"
b"002222228022a82201240424102429244024002541255225992501261a26a626"
b"002808280a28202855288828a22868299029082a202a822a882a8a2a01400440"
b"0640094010401240154018402140244040404240454048404a40514054406040"
b"6540814084409040004102410541084111411441204141414441504180418541"
b"a241014204421042124229424042004402440544084411441444194420444144"
b"4444504480449444014504451045244540459a4500460a464446504601480448"
b"1048404845485448624800491149444950496949044a00500250055008501150"
b"145020502850415044505050805001510451105115514051425100524452aa52"
b"0154045410542154405460548154a154005508558055885521566856a1560058"
b"14584158505899581a5940594259855a0160046010604060546062608660a960"
b"006124624a62926200641664106540654565a46501686a682569066a546a626a"
b"00800280058008801180148020802a8041804480508080808280a880aa800181"
b"0481068110814081518159810082208280828282a082a8820184048410841284"
b"158440846084898400854485a58518866a860088088825885a8880888288a888"
b"0689228a808a888a968aa88a0190049010904090569084900091229164915692"
b"89920094059444945094589429959095929541965198a6984999159a609a00a0"
b"02a008a00aa020a02aa0a0a051a159a1a6a100a202a208a22aa280a2a0a240a4"
b"95a465a698a60aa820a822a828a8a0a8a8a804a984a986a928aa2aaa91aaaaaa"
)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
qs, scales = np.hsplit(rest, [2 * QK_K // 8])
d = d.view(np.float16).astype(np.float32)
qs = qs.view(np.uint16)
scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
scales = (scales & 0x0F).reshape((n_blocks, -1))
db = d * (np.float32(0.5) + scales) * np.float32(0.25)
db = db.reshape((n_blocks, -1, 1, 1))
# get the sign indices and unpack the bits
signs = np.frombuffer(IQ2_XXS.ksigns, dtype=np.uint8).reshape(1, 1, 128)
signs = np.take_along_axis(signs, (qs >> 9).reshape((n_blocks, -1, 1)), axis=-1)
signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8))
signs = signs & np.uint8(0x01)
signs = np.where(signs == 0, np.float32(1), np.float32(-1))
signs = signs.reshape((n_blocks, -1, 2, 8))
assert cls.grid is not None
grid = np.take_along_axis(cls.grid, (qs & np.uint16(511)).reshape((n_blocks, -1, 1, 1)), axis=-2)
grid = grid.reshape((n_blocks, -1, 2, 8))
return (db * grid * signs).reshape((n_blocks, -1))
class IQ2_S(__Quant, qtype=GGMLQuantizationType.IQ2_S):
# iq2s_grid, but with each byte of the original packed in 2 bits,
# by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2.
grid_shape = (1024, 8)
grid_map = (0x08, 0x19, 0x2b)
grid_hex = (
b"00000200050008000a0011001400160019002000220025002800410044004600"
b"490050005200550058006100640066006900800082008500880091009400a000"
b"a500aa0001010401060109011001120115011801210124014001420145014801"
b"510154015601590160016501680181018401900192019501a101a40100020202"
b"050208021102140220022a02410244024602490250025502800285028a029402"
b"a202010404040604090410041204150418042104240426042904400442044504"
b"48044a0451045404560459046004620465048104840486048904900495049804"
b"a104a40400050205050508050a05110514051605190520052505280541054405"
b"46054905500552055505580561056405800582058505880591059405a0050106"
b"0406060609061006150640064506480651065406600681068406900600080208"
b"050808081108140816081908200825082a084108440846084908500852085508"
b"580861086408800885089408aa08010904091009120915091809210940094509"
b"480951095409600981099009000a110a140a220a280a2a0a500a990a01100410"
b"0610091010101210151018102110241026104010421045104810511054105610"
b"59106010621065106810811084108610901095109810a110a410001102110511"
b"08110a1111111411161119112011221125112811411144114611491150115211"
b"5511581161116411801182118511881191119411011204120912101215122112"
b"2412401245125112541281128412901200140214051408141114141416141914"
b"2014251428144114441446144914501452145514581461146414801482148514"
b"881491149414a014011504150615091510151215151518152115241540154215"
b"4515481551155415601581158415901500160516081611161416201641164416"
b"50168016aa160118041806180918101815181818211840184218451848185118"
b"541860188118841800190219051908191119141920194119441950196919a219"
b"041a101a401a561a00200220052008201120142016201920202025202a204120"
b"4420502052205520642080208a209420aa200121042110211221152121214021"
b"4221452151215421602181218421902100220a22222228222a22442250228822"
b"8a22a82201240424062409241024152418242124242440244224452448245124"
b"5424602481248424902400250525082511251425202541254425502566258025"
b"0126042610264026592600280528112814284128442850288a28aa2801290429"
b"102995290a2a222a642a882a8a2a014004400640094010401240154018401a40"
b"21402440264040404240454048404a4051405440564059406040624065408140"
b"8440904095409840a140a4400041024105410841114114411641194120412241"
b"2541414144414641494150415241554158416141644180418241854188419141"
b"9441a04101420442104212421542184224424042454248425142544260428142"
b"844200440244054408440a441144144416441944204422442544284441444444"
b"46444944504452445544584461446444804482448544884491449444a0440145"
b"0445064509451045124515451845214524454045424545454845514554456045"
b"6a4581458445904500460246054608461146144620464146444650468046a546"
b"0148044809481048124815481848214824484048424845484848514854486048"
b"84489048004902490549084911491449204941494449504980499649014a044a"
b"104a404a00500250055008501150145016501950205022502550285041504450"
b"4650495050505250555058506150645080508250855088509150945001510451"
b"0651095110511251155118512151245140514251455148515151545160518151"
b"8451905100520552085211521452205241524452505269528052015404540654"
b"0954105412541554185421542454405442544554485451545454605481548454"
b"9054005502550555085511551455205541554455505580550156045610562656"
b"405600580258055808581158145820584158445850585a588058015904591059"
b"4059005a195a855aa85a01600460066010601260156018602160246040604560"
b"4860516054606060846090600061026105610861116114612061416144615061"
b"806199610462106240625662a162006405640864116414642064416444645064"
b"806401650465106540654a656865926500669466016804681068656898680069"
b"2a69426aa16a0080028005800880118014801980208025804180448050805280"
b"5580588061808080858091809480018104810981108112811581188121812481"
b"408142814581488151815481818184819081a981008205820a82118214824182"
b"4482508201840484068409841084128415841884218440844284458448845184"
b"5484608481848484908400850285058508851185148520854185448550858085"
b"8a85018604861086298640860088058811881488418844885088a28801890489"
b"40896589228a588a5a8a828aa28a019004900990109012901590189024904090"
b"4290459048905190549060908190849090900091059111911491419144915091"
b"5a910192049210924092a6920094029405940894119414942094419444945094"
b"8094969401950495109540959895a19500964696649601980498109826984098"
b"a998009949995299909a00a005a00aa014a022a02aa041a044a050a0a2a0aaa0"
b"40a165a102a20aa222a228a22aa282a288a28aa2a8a201a404a410a440a489a4"
b"a4a400a519a551a60aa828a8a2a854a986a908aa0aaa20aa22aa28aa88aaaaaa"
)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
qs, rest = np.hsplit(rest, [QK_K // 8])
signs, rest = np.hsplit(rest, [QK_K // 8])
qh, scales = np.hsplit(rest, [QK_K // 32])
d = d.view(np.float16).astype(np.float32)
scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
scales = (scales & 0x0F).reshape((n_blocks, -1))
db = d * (np.float32(0.5) + scales) * np.float32(0.25)
db = db.reshape((n_blocks, -1, 1, 1))
# unpack the sign bits
signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8))
signs = signs & np.uint8(0x01)
signs = np.where(signs == 0, np.float32(1), np.float32(-1))
signs = signs.reshape((n_blocks, -1, 2, 8))
qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4))
qs = qs.astype(np.uint16) | ((qh & 0x03).astype(np.uint16) << 8).reshape((n_blocks, -1))
assert cls.grid is not None
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
grid = grid.reshape((n_blocks, -1, 2, 8))
return (db * grid * signs).reshape((n_blocks, -1))
class IQ3_XXS(__Quant, qtype=GGMLQuantizationType.IQ3_XXS):
grid_shape = (256, 4)
grid_map = (0x04, 0x0c, 0x14, 0x1c, 0x24, 0x2c, 0x34, 0x3e)
grid_hex = (
b"0000020004001100130017002000220031004200730075000101030110011201"
b"2101250130013201410154017001000202020402110220022202310233023702"
b"5102570275020103070310031203250370031304370444045704730475040105"
b"0705320552053506640610071407160743076107011003101010121021102310"
b"3010321034104710501000110211111120112211011203121012121221123012"
b"7212001302132013311346136613011405145014201524154615711505162217"
b"4017002002201120132020202220262031204220012103210521102112212121"
b"3021632167217021002202221122172220222222372240225522012310231423"
b"7023742335245324032527254125742501270327162745270130103012302130"
b"2330503065307230003102312031313144314631013203321032253252327232"
b"1133333330344734723400350635223555351436363663363337603704401740"
b"3540374053405740744120423742404260426642074345430444514464442545"
b"4345704505471047124730471250415070500051065126515551145232527252"
b"0253535310542354275472540255315550562457425724604460466064602161"
b"6161176264623063366344640565526533660367216703700570077010703270"
b"5270267140711272457252720073157333736073217441740075027524753076"
)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
qs, scales = np.hsplit(rest, [QK_K // 4])
d = d.view(np.float16).astype(np.float32)
scales = scales.view(np.uint32)
db = d * (np.float32(0.5) + (scales >> 28).astype(np.float32)) * np.float32(0.5)
db = db.reshape((n_blocks, -1, 1, 1))
# get the sign indices and unpack the bits
signs = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 7, 14, 21], dtype=np.uint32).reshape((1, 1, 4))
ksigns = np.frombuffer(IQ2_XXS.ksigns, dtype=np.uint8).reshape((1, 1, 1, 128))
signs = (signs & np.uint32(0x7F)).reshape((n_blocks, -1, 4, 1))
signs = np.take_along_axis(ksigns, signs, axis=-1)
signs = signs.reshape((n_blocks, -1, 4, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 1, 8))
signs = signs & np.uint8(0x01)
signs = np.where(signs == 0, np.float32(1), np.float32(-1))
signs = signs.reshape((n_blocks, -1, 4, 8))
assert cls.grid is not None
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
grid = grid.reshape((n_blocks, -1, 4, 8))
return (db * grid * signs).reshape((n_blocks, -1))
class IQ3_S(__Quant, qtype=GGMLQuantizationType.IQ3_S):
grid_shape = (512, 4)
grid_map = (0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f)
grid_hex = (
b"0000010002000500070010001100120014001600200021002500330040004200"
b"4500470051005300600062007100740077000001010102010401100111011501"
b"2001230127013101350144016101650172010002010205020702100213021602"
b"2102250230023402420245024702510253027002730203031103150320032203"
b"3103330336034403500352036703710375030004130417042104240432044004"
b"4304510470040205040520052205260533054105450547056605730506061106"
b"1306310652067106000702070407200722072607330750075407001001100210"
b"0410101011101310151017102010221031103410361054105610611072100011"
b"0111031106111011141121113011331141115011521170117611001212121512"
b"1712201224123212401243125512601272120113041307131013131321132713"
b"3013341341136213701303140514121414143114331442144614501454140115"
b"1015131521153015321551152016241627164416461601170317101712172117"
b"3517411762177017002001200320052007201020122014201620212023202720"
b"3020322041204320452050205220672070207320752000210221102113211721"
b"2221252131213421422151210122042207222122232230223722412253225722"
b"7122742200230223052311232223242331233323422350236623012407242024"
b"2324322435244124722475240425112522253725402553257025002602260726"
b"2126552661260527112726273027432750270230113013301530173022303130"
b"3330353042304430473051306330713001310331053114312131233140316031"
b"7231763100321232203232323432503201331033143321332333273330334133"
b"4333473355337333033411341634223431345234603464340135103512352535"
b"3235443556357335163641360137033720372237353700400440124020402440"
b"2740324041405040704002410741114113412241304135414341514155410142"
b"0342104215422142334240425742624270420443114313432043224331433543"
b"0044024424443744404471440545074521456245134634466046104715473047"
b"4347514702501050145022504050445047505250665074500151035105511251"
b"2151325172510052115223523052365253520253075310532753445351536553"
b"7353015404542054325446541255265551555355425602570457225711601360"
b"1560316033606060006120612761646112623462426255626262706200631463"
b"2163406325644364626400650365346560650566406611671367007004700770"
b"2070227036704070547062700271117124714371457101720472107216722172"
b"3072517202733273357353730174057413742074507422754275027631760077"
)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
qs, rest = np.hsplit(rest, [QK_K // 4])
qh, rest = np.hsplit(rest, [QK_K // 32])
signs, scales = np.hsplit(rest, [QK_K // 8])
d = d.view(np.float16).astype(np.float32)
scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
scales = (scales & 0x0F).reshape((n_blocks, -1))
db = d * (1 + 2 * scales)
db = db.reshape((n_blocks, -1, 1, 1))
# unpack the sign bits
signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8))
signs = signs & np.uint8(0x01)
signs = np.where(signs == 0, np.float32(1), np.float32(-1))
signs = signs.reshape((n_blocks, -1, 4, 8))
qh = qh.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8)
qh = (qh & 0x01).astype(np.uint16).reshape((n_blocks, -1))
qs = qs.astype(np.uint16) | (qh << 8)
assert cls.grid is not None
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
grid = grid.reshape((n_blocks, -1, 4, 8))
return (db * grid * signs).reshape((n_blocks, -1))
class IQ1_S(__Quant, qtype=GGMLQuantizationType.IQ1_S):
# iq1s_grid, with each byte packed into 2 bits
# -1, 0, 1 <=> 0, 1, 2
grid_shape = (2048, 8)
grid_map = (-1, 0, 1)
grid_hex = (
b"00000200050008000a00110015002000220028002a0045005100540056006500"
b"8000820088008a009500a000a200a800aa000401050111011401160119011a01"
b"2501410146014901520155015a0161016401660168018501910194019601a501"
b"0002020208020a0215022002220228022a024502510259026402690280028202"
b"88028a02910295029902a002a202a802aa021104140416042504410449045504"
b"5a046404650491049904a5040105040505050605150518051a05290540054505"
b"4a0550055105540555055605590560056205650568056a058105910595059805"
b"9a05a105a405a505a605a9051406190641064406500652065506580660066106"
b"6606690685069106940699060008020808080a0815082008220828082a084508"
b"5108560865088008820888088a089508a008a208a808aa080509110914091909"
b"2409250941095009510955096109640969099109940996099909a509000a020a"
b"080a0a0a150a200a220a280a2a0a450a510a590a610a650a800a820a850a880a"
b"8a0a950aa00aa20aa80aaa0a1010111014101910241025104110441050105510"
b"58106110641065106910911094109610a110a510011104110611091110111211"
b"1511181121112411291145114a11501151115211541155115611591160116511"
b"841192119511a111a41111121412161225124012461249125212551258125a12"
b"641266128512911294129612a512011406140914141415141814191421142614"
b"41144514461448144a1451145414551456145914621465146814841489149014"
b"94149514981499149a14a114a414a514a914021505150a151115141515151615"
b"191520152215251528152a154115441545154615511552155415551556155915"
b"5a1561156415651566156915801582158415851588158a159015911594159515"
b"961599159a15a015a215a51501160416051606161516161618161a1621162616"
b"401642164416451648164a165116551656165816591661166416651668166916"
b"6a1686168a1692169516a416a916111816182518411844184618491850185518"
b"58185a1860186118641866186918851891189418a5181019121915191a192119"
b"25194219441945194819511954195519561959195a19601965196a1989199119"
b"921995199819a119a619a919091a161a241a261a441a461a491a501a521a551a"
b"581a611a661a691a851a911a961a9a1a0020022008200a201520202022202520"
b"28202a20452051205920612065208020822088208a209520a020a220a520a820"
b"aa2005211121142119212521422144214921552158215a216121642165216621"
b"8521902196219921a521012208220a22112215222022222228222a2245225122"
b"562259226522812288228a2291229522a022a222a822aa220524142416241924"
b"252444244524462449245224552458245a2466248524912494249924a124a524"
b"0925152521252925402545254825512554255525592562256525682589259025"
b"9425952598259a25a125a425a625a92505261026122619262526412649265526"
b"6026612669268426862690269a260028022808280a2815282028222828282a28"
b"45285128542865288028822888288a28a028a228a828aa280929112914291929"
b"2529462949295229552961296429662969298529902996299929a429a529002a"
b"022a082a0a2a202a222a282a2a2a452a512a562a592a652a802a822a882a8a2a"
b"952aa02aa22aa82aaa2a054011401640254049405240554058405a4061406440"
b"664094409940a140a6400041014104410641094112411541164118411a412141"
b"26412941454148414a41514154415541564159415a41654168416a4181418441"
b"8641904192419541a041a141a241054211421442164225424142524255425a42"
b"6442694289429442a5420144154419442944454448444a445144544455445644"
b"61446244654468446a44814486448944904492449544a044a144a94401450245"
b"05450a4511451445154516451945204525452a45414544454545464549455045"
b"5145544555455645584559456145644565456645694582458445854588459145"
b"94459545964599459a45a545a845aa450146054609461446154618461a462146"
b"2446294640464246454648465046514652465546564659466246654668468146"
b"85468a4694469546a146a446a6460548114815481a4825484248494850485548"
b"5848614864486648694885489148944896489948a5480149054906490a491049"
b"144915491849214924492649404945494a495149524954495549564959496049"
b"6249654966496a49864989499249954996499849a149a449a649a949164a444a"
b"464a494a554a584a5a4a644a694a944aa54a0150045005500650095012501550"
b"1a50215024502950405045504850515054505550565059506550685086508950"
b"95509850a050a150a650a9500551085109510a51115114511551165118511951"
b"20512551265128512a5141514451455146514951505151515251545155515651"
b"585159515a51615164516551665169518251855191519451955196519951a051"
b"a551aa5101520652125215521a5221522452425245524a525152545255525652"
b"595262526552855290529252955299529a52a452045405541154145415541654"
b"185419542154255428542a54415444544554465449544a545054515454545554"
b"5654585459545a54615462546454655466546954805488548a54915494549554"
b"96549954a154a454a554aa540155025504550555065509551055115512551455"
b"1555165519551a55215524552555265529554055415542554455455546554855"
b"4955505551555255545555555655585559555a55605561556455655566556855"
b"69556a5581558455855589558a559055915594559555965598559955a155a455"
b"a555a655a9550056015602560456065608560956115614561556185619562056"
b"2156225624562556265628562956415645564656485649564a56505651565256"
b"545655565656585659565a566156645665566956825685568656885689568a56"
b"915695569a56a256a556a656a856a95604580558065809581058155818582158"
b"2a58455848584a58515854585558565858585958605862586458655882588958"
b"9058925895589858a158a9580159025905590a59115914591559165919592559"
b"41594459455946594959505951595259545955595659585959595a5961596459"
b"655966596959815985598959915994599559965998599959a559045a085a155a"
b"1a5a205a255a265a295a455a485a495a515a555a565a585a595a625a655a685a"
b"6a5a815a8a5a925a955a965a985a9a5aa15a0560146016601960256044605060"
b"5560566058605a60616064606660696081609660a56001610461066109611261"
b"15612161226126612961456149615161556156615961656166616a6184618a61"
b"92619561a161a661a96111621662196240624162466255625662586260628562"
b"91629662a56211641264156416641a6421642664296440644264456448644a64"
b"516454645564566459645a646064626465648464856489649064926494649564"
b"966498649a64a164a464a964056508650a651165156516651965446545654665"
b"496550655165546555655665596561656465656566656965866589658a659165"
b"9565966599659a65a265a565a665a86502660966156620662666286629664066"
b"456648664a66516654665566566658665a666066656668668066826685668a66"
b"9466966698669966a066a466a666aa661668196825684168526855685a686168"
b"6968856891689868a66801690469106915692169246926692969406941694569"
b"4669486951695469556956695969606965696a69826984698a699569a169a469"
b"a569a969116a166a186a416a446a496a506a556a586a5a6a646a656a696a866a"
b"946a986a9a6aa66a0080028008800a802080228028802a804580508051805480"
b"5680598065808080828088808a809580a080a280a880aa800581118114811681"
b"1981258141814481498150815281558156815881598164816681698185818981"
b"948196819981a5810082028208820a8215822082228228822a82518254825982"
b"65828082828288828a829582a082a282a882aa82148419844184448451845584"
b"5a846184648469849484998401850985128515851a8526852985408541854585"
b"4885518554855585568559855a856585668568856a8581858485868589859085"
b"928595859885a68511861686198625864186448649864a865086558659865a86"
b"618666866a86858691869a86a4860088028808880a8815882088228828882a88"
b"41884588518854885988658869888088828888888a889588a088a288a888aa88"
b"05890689118914891689258941894489468949895089528955895a8961896489"
b"858996899989a589008a028a088a0a8a158a208a228a288a2a8a458a518a548a"
b"568a808a828a888a8a8a958aa08aa28aa88aaa8a059011901690189019902590"
b"419046904990559058905a9069906a9085909190949096909990a59001910491"
b"069109911091159118911a912191249126912991409145915091519154915591"
b"569159916291659184918691929195919891a191a491a691a991059211921492"
b"19922592449246924992509252925592589266926992859294929692a9920194"
b"04940694109415941894269440944a9451945494559456945894599460946194"
b"62946594849486949294949495949894a194a9940095059508950a9510951195"
b"14951595169519952195259529952a9541954495459546954995509551955295"
b"549555955695589559955a956195649565956695699581958595889591959295"
b"94959595969599959a95a095a295a595a895aa95019604961096159619962096"
b"2696299645964896499651965296559656965996659668968296849689968a96"
b"929694969596a496a696a9960598169819982598419846985098529855985698"
b"5a98649865988598919896989998a59804990699099910991299159918991a99"
b"209921992499269940994299459948994a995199549955995699599962996599"
b"66996a99819984999099929995999a99a199a699059a159a259a449a469a499a"
b"509a559a589a619a859a919a949a959a969a00a002a008a00aa015a020a022a0"
b"28a02aa045a051a054a056a059a080a082a088a08aa095a0a0a0a2a0a8a0aaa0"
b"05a109a111a114a116a119a11aa146a149a151a155a158a15aa161a164a185a1"
b"90a192a196a199a102a208a20aa210a219a222a228a22aa245a251a256a259a2"
b"65a280a282a288a28aa295a2a0a2a2a2a8a2aaa219a425a441a444a450a454a4"
b"55a458a45aa461a465a466a468a469a485a406a509a510a512a515a518a526a5"
b"29a542a545a551a554a555a556a559a565a56aa581a584a585a586a589a592a5"
b"95a598a505a611a616a61aa621a625a644a646a64aa652a655a656a658a660a6"
b"62a686a690a695a696a699a6a1a6a4a6a6a600a802a808a80aa820a822a828a8"
b"2aa851a854a856a859a880a882a888a88aa895a8a0a8a2a8a8a8aaa805a914a9"
b"19a921a925a941a950a955a95aa961a966a969a990a996a900aa02aa08aa0aaa"
b"20aa22aa28aa2aaa51aa54aa56aa80aa82aa88aa8aaa95aaa0aaa2aaa8aaaaaa"
)
delta = np.float32(0.125)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
qs, qh = np.hsplit(rest, [QK_K // 8])
d = d.view(np.float16).astype(np.float32)
qh = qh.view(np.uint16)
dl = d * (2 * ((qh >> 12) & 7) + 1)
dl = dl.reshape((n_blocks, -1, 1, 1))
delta = np.where((qh & np.uint16(0x8000)) == 0, cls.delta, -cls.delta)
delta = delta.reshape((n_blocks, -1, 1, 1))
qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 3, 6, 9], dtype=np.uint16).reshape((1, 1, 4))
qs = qs.astype(np.uint16) | ((qh & 7) << 8).reshape((n_blocks, -1))
assert cls.grid is not None
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
grid = grid.reshape((n_blocks, -1, 4, 8))
return (dl * (grid + delta)).reshape((n_blocks, -1))
class IQ1_M(__Quant, qtype=GGMLQuantizationType.IQ1_M):
grid_shape = IQ1_S.grid_shape
grid_map = IQ1_S.grid_map
grid_hex = IQ1_S.grid_hex
delta = IQ1_S.delta
# Okay *this* type is weird. It's the only one which stores the f16 scales in multiple parts.
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
qs, rest = np.hsplit(blocks, [QK_K // 8])
qh, scales = np.hsplit(rest, [QK_K // 16])
# The f16 scale is packed across multiple bytes
scales = scales.view(np.uint16)
d = (scales.reshape((n_blocks, 4)) & np.uint16(0xF000)) >> np.array([12, 8, 4, 0], dtype=np.uint16).reshape((1, 4))
d = d[..., 0] | d[..., 1] | d[..., 2] | d[..., 3]
d = d.view(np.float16).astype(np.float32).reshape((n_blocks, 1))
scales = scales.reshape(n_blocks, -1, 1) >> np.array([0, 3, 6, 9], dtype=np.uint16).reshape((1, 1, 4))
scales = (scales & 0x07).reshape((n_blocks, -1))
dl = d * (2 * scales + 1)
dl = dl.reshape((n_blocks, -1, 2, 1, 1))
qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
qs = qs.astype(np.uint16) | ((qh & 0x07).astype(np.uint16) << 8).reshape((n_blocks, -1))
delta = np.where(qh & 0x08 == 0, cls.delta, -cls.delta)
delta = delta.reshape((n_blocks, -1, 2, 2, 1))
assert cls.grid is not None
grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
grid = grid.reshape((n_blocks, -1, 2, 2, 8))
return (dl * (grid + delta)).reshape((n_blocks, -1))
class IQ4_NL(__Quant, qtype=GGMLQuantizationType.IQ4_NL):
kvalues = (-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113)
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, qs = np.hsplit(blocks, [2])
d = d.view(np.float16).astype(np.float32)
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 1))
kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16)
qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1))
return (d * qs)
class IQ4_XS(__Quant, qtype=GGMLQuantizationType.IQ4_XS):
@classmethod
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
n_blocks = blocks.shape[0]
d, rest = np.hsplit(blocks, [2])
scales_h, rest = np.hsplit(rest, [2])
scales_l, qs = np.hsplit(rest, [QK_K // 64])
d = d.view(np.float16).astype(np.float32)
scales_h = scales_h.view(np.uint16)
scales_l = scales_l.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
scales_h = scales_h.reshape((n_blocks, 1, -1)) >> np.array([2 * i for i in range(QK_K // 32)], dtype=np.uint16).reshape((1, -1, 1))
scales_l = scales_l.reshape((n_blocks, -1)) & np.uint8(0x0F)
scales_h = scales_h.reshape((n_blocks, -1)).astype(np.uint8) & np.uint8(0x03)
scales = (scales_l | (scales_h << np.uint8(4))).astype(np.int8) - np.int8(32)
dl = (d * scales.astype(np.float32)).reshape((n_blocks, -1, 1))
qs = qs.reshape((n_blocks, -1, 1, 16)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
qs = qs.reshape((n_blocks, -1, 32, 1)) & np.uint8(0x0F)
kvalues = np.array(IQ4_NL.kvalues, dtype=np.int8).reshape((1, 1, 1, -1))
qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1, 32))
return (dl * qs).reshape((n_blocks, -1))