Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import gradio as gr | |
from gradio.context import Context | |
from modules import shared_items, shared, ui_common, sd_models, processing, infotext_utils, paths | |
from backend import memory_management, stream | |
from backend.args import dynamic_args | |
total_vram = int(memory_management.total_vram) | |
ui_forge_preset: gr.Radio = None | |
ui_checkpoint: gr.Dropdown = None | |
ui_vae: gr.Dropdown = None | |
ui_clip_skip: gr.Slider = None | |
ui_forge_unet_storage_dtype_options: gr.Radio = None | |
ui_forge_async_loading: gr.Radio = None | |
ui_forge_pin_shared_memory: gr.Radio = None | |
ui_forge_inference_memory: gr.Slider = None | |
forge_unet_storage_dtype_options = { | |
'Automatic': (None, False), | |
'Automatic (fp16 LoRA)': (None, True), | |
'bnb-nf4': ('nf4', False), | |
'bnb-nf4 (fp16 LoRA)': ('nf4', True), | |
'float8-e4m3fn': (torch.float8_e4m3fn, False), | |
'float8-e4m3fn (fp16 LoRA)': (torch.float8_e4m3fn, True), | |
'bnb-fp4': ('fp4', False), | |
'bnb-fp4 (fp16 LoRA)': ('fp4', True), | |
'float8-e5m2': (torch.float8_e5m2, False), | |
'float8-e5m2 (fp16 LoRA)': (torch.float8_e5m2, True), | |
} | |
module_list = {} | |
def bind_to_opts(comp, k, save=False, callback=None): | |
def on_change(v): | |
shared.opts.set(k, v) | |
if save: | |
shared.opts.save(shared.config_filename) | |
if callback is not None: | |
callback() | |
return | |
comp.change(on_change, inputs=[comp], queue=False, show_progress=False) | |
return | |
def make_checkpoint_manager_ui(): | |
global ui_checkpoint, ui_vae, ui_clip_skip, ui_forge_unet_storage_dtype_options, ui_forge_async_loading, ui_forge_pin_shared_memory, ui_forge_inference_memory, ui_forge_preset | |
if shared.opts.sd_model_checkpoint in [None, 'None', 'none', '']: | |
if len(sd_models.checkpoints_list) == 0: | |
sd_models.list_models() | |
if len(sd_models.checkpoints_list) > 0: | |
shared.opts.set('sd_model_checkpoint', next(iter(sd_models.checkpoints_list.values())).name) | |
ui_forge_preset = gr.Radio(label="UI", value=lambda: shared.opts.forge_preset, choices=['sd', 'xl', 'flux', 'all']) | |
ckpt_list, vae_list = refresh_models() | |
ui_checkpoint = gr.Dropdown( | |
value=lambda: shared.opts.sd_model_checkpoint, | |
label="Checkpoint", | |
elem_classes=['model_selection'], | |
choices=ckpt_list | |
) | |
ui_vae = gr.Dropdown( | |
value=lambda: [os.path.basename(x) for x in shared.opts.forge_additional_modules], | |
multiselect=True, | |
label="VAE / Text Encoder", | |
render=False, | |
choices=vae_list | |
) | |
def gr_refresh_models(): | |
a, b = refresh_models() | |
return gr.update(choices=a), gr.update(choices=b) | |
refresh_button = ui_common.ToolButton(value=ui_common.refresh_symbol, elem_id=f"forge_refresh_checkpoint", tooltip="Refresh") | |
refresh_button.click( | |
fn=gr_refresh_models, | |
inputs=[], | |
outputs=[ui_checkpoint, ui_vae], | |
show_progress=False, | |
queue=False | |
) | |
Context.root_block.load( | |
fn=gr_refresh_models, | |
inputs=[], | |
outputs=[ui_checkpoint, ui_vae], | |
show_progress=False, | |
queue=False | |
) | |
ui_vae.render() | |
ui_forge_unet_storage_dtype_options = gr.Dropdown(label="Diffusion in Low Bits", value=lambda: shared.opts.forge_unet_storage_dtype, choices=list(forge_unet_storage_dtype_options.keys())) | |
bind_to_opts(ui_forge_unet_storage_dtype_options, 'forge_unet_storage_dtype', save=True, callback=refresh_model_loading_parameters) | |
ui_forge_async_loading = gr.Radio(label="Swap Method", value=lambda: shared.opts.forge_async_loading, choices=['Queue', 'Async']) | |
ui_forge_pin_shared_memory = gr.Radio(label="Swap Location", value=lambda: shared.opts.forge_pin_shared_memory, choices=['CPU', 'Shared']) | |
ui_forge_inference_memory = gr.Slider(label="GPU Weights (MB)", value=lambda: total_vram - shared.opts.forge_inference_memory, minimum=0, maximum=int(memory_management.total_vram), step=1) | |
mem_comps = [ui_forge_inference_memory, ui_forge_async_loading, ui_forge_pin_shared_memory] | |
ui_forge_inference_memory.change(refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False) | |
ui_forge_async_loading.change(refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False) | |
ui_forge_pin_shared_memory.change(refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False) | |
Context.root_block.load(refresh_memory_management_settings, inputs=mem_comps, queue=False, show_progress=False) | |
ui_clip_skip = gr.Slider(label="Clip skip", value=lambda: shared.opts.CLIP_stop_at_last_layers, **{"minimum": 1, "maximum": 12, "step": 1}) | |
bind_to_opts(ui_clip_skip, 'CLIP_stop_at_last_layers', save=False) | |
ui_checkpoint.change(checkpoint_change, inputs=[ui_checkpoint], show_progress=False) | |
ui_vae.change(vae_change, inputs=[ui_vae], queue=False, show_progress=False) | |
return | |
def find_files_with_extensions(base_path, extensions): | |
found_files = {} | |
for root, _, files in os.walk(base_path): | |
for file in files: | |
if any(file.endswith(ext) for ext in extensions): | |
full_path = os.path.join(root, file) | |
found_files[file] = full_path | |
return found_files | |
def refresh_models(): | |
global module_list | |
shared_items.refresh_checkpoints() | |
ckpt_list = shared_items.list_checkpoint_tiles(shared.opts.sd_checkpoint_dropdown_use_short) | |
file_extensions = ['ckpt', 'pt', 'bin', 'safetensors'] | |
module_list.clear() | |
module_paths = [ | |
os.path.abspath(os.path.join(paths.models_path, "VAE")), | |
os.path.abspath(os.path.join(paths.models_path, "text_encoder")), | |
] | |
if isinstance(shared.cmd_opts.vae_dir, str): | |
module_paths.append(os.path.abspath(shared.cmd_opts.vae_dir)) | |
for vae_path in module_paths: | |
vae_files = find_files_with_extensions(vae_path, file_extensions) | |
module_list.update(vae_files) | |
return ckpt_list, module_list.keys() | |
def refresh_memory_management_settings(model_memory, async_loading, pin_shared_memory): | |
inference_memory = total_vram - model_memory | |
shared.opts.set('forge_async_loading', async_loading) | |
shared.opts.set('forge_inference_memory', inference_memory) | |
shared.opts.set('forge_pin_shared_memory', pin_shared_memory) | |
stream.stream_activated = async_loading == 'Async' | |
memory_management.current_inference_memory = inference_memory * 1024 * 1024 | |
memory_management.PIN_SHARED_MEMORY = pin_shared_memory == 'Shared' | |
log_dict = dict( | |
stream=stream.should_use_stream(), | |
inference_memory=memory_management.minimum_inference_memory() / (1024 * 1024), | |
pin_shared_memory=memory_management.PIN_SHARED_MEMORY | |
) | |
print(f'Environment vars changed: {log_dict}') | |
processing.need_global_unload = True | |
return | |
def refresh_model_loading_parameters(): | |
from modules.sd_models import select_checkpoint, model_data | |
checkpoint_info = select_checkpoint() | |
unet_storage_dtype, lora_fp16 = forge_unet_storage_dtype_options.get(shared.opts.forge_unet_storage_dtype, (None, False)) | |
dynamic_args['online_lora'] = lora_fp16 | |
model_data.forge_loading_parameters = dict( | |
checkpoint_info=checkpoint_info, | |
additional_modules=shared.opts.forge_additional_modules, | |
unet_storage_dtype=unet_storage_dtype | |
) | |
print(f'Model selected: {model_data.forge_loading_parameters}') | |
print(f'Using online LoRAs in FP16: {lora_fp16}') | |
processing.need_global_unload = True | |
return | |
def checkpoint_change(ckpt_name): | |
shared.opts.set('sd_model_checkpoint', ckpt_name) | |
shared.opts.save(shared.config_filename) | |
refresh_model_loading_parameters() | |
return | |
def vae_change(module_names): | |
modules = [] | |
for n in module_names: | |
if n in module_list: | |
modules.append(module_list[n]) | |
shared.opts.set('forge_additional_modules', modules) | |
shared.opts.save(shared.config_filename) | |
refresh_model_loading_parameters() | |
return | |
def get_a1111_ui_component(tab, label): | |
fields = infotext_utils.paste_fields[tab]['fields'] | |
for f in fields: | |
if f.label == label or f.api == label: | |
return f.component | |
def forge_main_entry(): | |
ui_txt2img_width = get_a1111_ui_component('txt2img', 'Size-1') | |
ui_txt2img_height = get_a1111_ui_component('txt2img', 'Size-2') | |
ui_txt2img_cfg = get_a1111_ui_component('txt2img', 'CFG scale') | |
ui_txt2img_distilled_cfg = get_a1111_ui_component('txt2img', 'Distilled CFG Scale') | |
ui_txt2img_sampler = get_a1111_ui_component('txt2img', 'sampler_name') | |
ui_txt2img_scheduler = get_a1111_ui_component('txt2img', 'scheduler') | |
ui_img2img_width = get_a1111_ui_component('img2img', 'Size-1') | |
ui_img2img_height = get_a1111_ui_component('img2img', 'Size-2') | |
ui_img2img_cfg = get_a1111_ui_component('img2img', 'CFG scale') | |
ui_img2img_distilled_cfg = get_a1111_ui_component('img2img', 'Distilled CFG Scale') | |
ui_img2img_sampler = get_a1111_ui_component('img2img', 'sampler_name') | |
ui_img2img_scheduler = get_a1111_ui_component('img2img', 'scheduler') | |
output_targets = [ | |
ui_vae, | |
ui_clip_skip, | |
ui_forge_unet_storage_dtype_options, | |
ui_forge_async_loading, | |
ui_forge_pin_shared_memory, | |
ui_forge_inference_memory, | |
ui_txt2img_width, | |
ui_img2img_width, | |
ui_txt2img_height, | |
ui_img2img_height, | |
ui_txt2img_cfg, | |
ui_img2img_cfg, | |
ui_txt2img_distilled_cfg, | |
ui_img2img_distilled_cfg, | |
ui_txt2img_sampler, | |
ui_img2img_sampler, | |
ui_txt2img_scheduler, | |
ui_img2img_scheduler | |
] | |
ui_forge_preset.change(on_preset_change, inputs=[ui_forge_preset], outputs=output_targets, queue=False, show_progress=False) | |
Context.root_block.load(on_preset_change, inputs=None, outputs=output_targets, queue=False, show_progress=False) | |
refresh_model_loading_parameters() | |
return | |
def on_preset_change(preset=None): | |
if preset is not None: | |
shared.opts.set('forge_preset', preset) | |
shared.opts.save(shared.config_filename) | |
if shared.opts.forge_preset == 'sd': | |
return [ | |
gr.update(visible=True), # ui_vae | |
gr.update(visible=True, value=1), # ui_clip_skip | |
gr.update(visible=False, value='Automatic'), # ui_forge_unet_storage_dtype_options | |
gr.update(visible=False, value='Queue'), # ui_forge_async_loading | |
gr.update(visible=False, value='CPU'), # ui_forge_pin_shared_memory | |
gr.update(visible=False, value=total_vram - 1024), # ui_forge_inference_memory | |
gr.update(value=512), # ui_txt2img_width | |
gr.update(value=512), # ui_img2img_width | |
gr.update(value=640), # ui_txt2img_height | |
gr.update(value=512), # ui_img2img_height | |
gr.update(value=7), # ui_txt2img_cfg | |
gr.update(value=7), # ui_img2img_cfg | |
gr.update(visible=False, value=3.5), # ui_txt2img_distilled_cfg | |
gr.update(visible=False, value=3.5), # ui_img2img_distilled_cfg | |
gr.update(value='Euler a'), # ui_txt2img_sampler | |
gr.update(value='Euler a'), # ui_img2img_sampler | |
gr.update(value='Automatic'), # ui_txt2img_scheduler | |
gr.update(value='Automatic'), # ui_img2img_scheduler | |
] | |
if shared.opts.forge_preset == 'xl': | |
return [ | |
gr.update(visible=True), # ui_vae | |
gr.update(visible=False, value=1), # ui_clip_skip | |
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options | |
gr.update(visible=False, value='Queue'), # ui_forge_async_loading | |
gr.update(visible=False, value='CPU'), # ui_forge_pin_shared_memory | |
gr.update(visible=True, value=total_vram - 1024), # ui_forge_inference_memory | |
gr.update(value=896), # ui_txt2img_width | |
gr.update(value=1024), # ui_img2img_width | |
gr.update(value=1152), # ui_txt2img_height | |
gr.update(value=1024), # ui_img2img_height | |
gr.update(value=5), # ui_txt2img_cfg | |
gr.update(value=5), # ui_img2img_cfg | |
gr.update(visible=False, value=3.5), # ui_txt2img_distilled_cfg | |
gr.update(visible=False, value=3.5), # ui_img2img_distilled_cfg | |
gr.update(value='DPM++ 2M SDE'), # ui_txt2img_sampler | |
gr.update(value='DPM++ 2M SDE'), # ui_img2img_sampler | |
gr.update(value='Karras'), # ui_txt2img_scheduler | |
gr.update(value='Karras'), # ui_img2img_scheduler | |
] | |
if shared.opts.forge_preset == 'flux': | |
return [ | |
gr.update(visible=True), # ui_vae | |
gr.update(visible=False, value=1), # ui_clip_skip | |
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options | |
gr.update(visible=True, value='Queue'), # ui_forge_async_loading | |
gr.update(visible=True, value='CPU'), # ui_forge_pin_shared_memory | |
gr.update(visible=True, value=total_vram - 1024), # ui_forge_inference_memory | |
gr.update(value=896), # ui_txt2img_width | |
gr.update(value=1024), # ui_img2img_width | |
gr.update(value=1152), # ui_txt2img_height | |
gr.update(value=1024), # ui_img2img_height | |
gr.update(value=1), # ui_txt2img_cfg | |
gr.update(value=1), # ui_img2img_cfg | |
gr.update(visible=True, value=3.5), # ui_txt2img_distilled_cfg | |
gr.update(visible=True, value=3.5), # ui_img2img_distilled_cfg | |
gr.update(value='Euler'), # ui_txt2img_sampler | |
gr.update(value='Euler'), # ui_img2img_sampler | |
gr.update(value='Simple'), # ui_txt2img_scheduler | |
gr.update(value='Simple'), # ui_img2img_scheduler | |
] | |
return [ | |
gr.update(visible=True), # ui_vae | |
gr.update(visible=True, value=1), # ui_clip_skip | |
gr.update(visible=True, value='Automatic'), # ui_forge_unet_storage_dtype_options | |
gr.update(visible=True, value='Queue'), # ui_forge_async_loading | |
gr.update(visible=True, value='CPU'), # ui_forge_pin_shared_memory | |
gr.update(visible=True, value=total_vram - 1024), # ui_forge_inference_memory | |
gr.update(value=896), # ui_txt2img_width | |
gr.update(value=1024), # ui_img2img_width | |
gr.update(value=1152), # ui_txt2img_height | |
gr.update(value=1024), # ui_img2img_height | |
gr.update(value=7), # ui_txt2img_cfg | |
gr.update(value=7), # ui_img2img_cfg | |
gr.update(visible=True, value=3.5), # ui_txt2img_distilled_cfg | |
gr.update(visible=True, value=3.5), # ui_img2img_distilled_cfg | |
gr.update(value='DPM++ 2M'), # ui_txt2img_sampler | |
gr.update(value='DPM++ 2M'), # ui_img2img_sampler | |
gr.update(value='Automatic'), # ui_txt2img_scheduler | |
gr.update(value='Automatic'), # ui_img2img_scheduler | |
] | |