Spaces:
Runtime error
Runtime error
import contextlib | |
import torch | |
from backend import memory_management | |
def has_xpu() -> bool: | |
return memory_management.xpu_available | |
def has_mps() -> bool: | |
return memory_management.mps_mode() | |
def cuda_no_autocast(device_id=None) -> bool: | |
return False | |
def get_cuda_device_id(): | |
return memory_management.get_torch_device().index | |
def get_cuda_device_string(): | |
return str(memory_management.get_torch_device()) | |
def get_optimal_device_name(): | |
return memory_management.get_torch_device().type | |
def get_optimal_device(): | |
return memory_management.get_torch_device() | |
def get_device_for(task): | |
return memory_management.get_torch_device() | |
def torch_gc(): | |
memory_management.soft_empty_cache() | |
def torch_npu_set_device(): | |
return | |
def enable_tf32(): | |
return | |
cpu: torch.device = torch.device("cpu") | |
fp8: bool = False | |
device: torch.device = memory_management.get_torch_device() | |
device_interrogate: torch.device = memory_management.text_encoder_device() # for backward compatibility, not used now | |
device_gfpgan: torch.device = memory_management.get_torch_device() # will be managed by memory management system | |
device_esrgan: torch.device = memory_management.get_torch_device() # will be managed by memory management system | |
device_codeformer: torch.device = memory_management.get_torch_device() # will be managed by memory management system | |
dtype: torch.dtype = memory_management.unet_dtype() | |
dtype_vae: torch.dtype = memory_management.vae_dtype() | |
dtype_unet: torch.dtype = memory_management.unet_dtype() | |
dtype_inference: torch.dtype = memory_management.unet_dtype() | |
unet_needs_upcast = False | |
def cond_cast_unet(input): | |
return input | |
def cond_cast_float(input): | |
return input | |
nv_rng = None | |
patch_module_list = [] | |
def manual_cast_forward(target_dtype): | |
return | |
def manual_cast(target_dtype): | |
return | |
def autocast(disable=False): | |
return contextlib.nullcontext() | |
def without_autocast(disable=False): | |
return contextlib.nullcontext() | |
class NansException(Exception): | |
pass | |
def test_for_nans(x, where): | |
return | |
def first_time_calculation(): | |
return | |