Spaces:
Runtime error
Runtime error
import logging | |
import sys | |
import torch | |
from PIL import Image | |
from modules import devices, modelloader, script_callbacks, shared, upscaler_utils | |
from modules.upscaler import Upscaler, UpscalerData | |
from modules_forge.utils import prepare_free_memory | |
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth" | |
logger = logging.getLogger(__name__) | |
class UpscalerSwinIR(Upscaler): | |
def __init__(self, dirname): | |
self._cached_model = None # keep the model when SWIN_torch_compile is on to prevent re-compile every runs | |
self._cached_model_config = None # to clear '_cached_model' when changing model (v1/v2) or settings | |
self.name = "SwinIR" | |
self.model_url = SWINIR_MODEL_URL | |
self.model_name = "SwinIR 4x" | |
self.user_path = dirname | |
super().__init__() | |
scalers = [] | |
model_files = self.find_models(ext_filter=[".pt", ".pth"]) | |
for model in model_files: | |
if model.startswith("http"): | |
name = self.model_name | |
else: | |
name = modelloader.friendly_name(model) | |
model_data = UpscalerData(name, model, self) | |
scalers.append(model_data) | |
self.scalers = scalers | |
def do_upscale(self, img: Image.Image, model_file: str) -> Image.Image: | |
prepare_free_memory() | |
current_config = (model_file, shared.opts.SWIN_tile) | |
if self._cached_model_config == current_config: | |
model = self._cached_model | |
else: | |
try: | |
model = self.load_model(model_file) | |
except Exception as e: | |
print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr) | |
return img | |
self._cached_model = model | |
self._cached_model_config = current_config | |
img = upscaler_utils.upscale_2( | |
img, | |
model, | |
tile_size=shared.opts.SWIN_tile, | |
tile_overlap=shared.opts.SWIN_tile_overlap, | |
scale=model.scale, | |
desc="SwinIR", | |
) | |
devices.torch_gc() | |
return img | |
def load_model(self, path, scale=4): | |
if path.startswith("http"): | |
filename = modelloader.load_file_from_url( | |
url=path, | |
model_dir=self.model_download_path, | |
file_name=f"{self.model_name.replace(' ', '_')}.pth", | |
) | |
else: | |
filename = path | |
model_descriptor = modelloader.load_spandrel_model( | |
filename, | |
device=self._get_device(), | |
prefer_half=(devices.dtype == torch.float16), | |
expected_architecture="SwinIR", | |
) | |
if getattr(shared.opts, 'SWIN_torch_compile', False): | |
try: | |
model_descriptor.model.compile() | |
except Exception: | |
logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True) | |
return model_descriptor | |
def _get_device(self): | |
return devices.get_device_for('swinir') | |
def on_ui_settings(): | |
import gradio as gr | |
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling"))) | |
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling"))) | |
shared.opts.add_option("SWIN_torch_compile", shared.OptionInfo(False, "Use torch.compile to accelerate SwinIR.", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")).info("Takes longer on first run")) | |
script_callbacks.on_ui_settings(on_ui_settings) | |