Spaces:
Runtime error
Runtime error
import torch | |
import math | |
import itertools | |
from tqdm import trange | |
from backend import memory_management | |
from backend.patcher.base import ModelPatcher | |
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu"): | |
dims = len(tile) | |
output = torch.empty([samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])), device=output_device) | |
for b in trange(samples.shape[0]): | |
s = samples[b:b + 1] | |
out = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device) | |
out_div = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device) | |
for it in itertools.product(*map(lambda a: range(0, a[0], a[1] - overlap), zip(s.shape[2:], tile))): | |
s_in = s | |
upscaled = [] | |
for d in range(dims): | |
pos = max(0, min(s.shape[d + 2] - overlap, it[d])) | |
l = min(tile[d], s.shape[d + 2] - pos) | |
s_in = s_in.narrow(d + 2, pos, l) | |
upscaled.append(round(pos * upscale_amount)) | |
ps = function(s_in).to(output_device) | |
mask = torch.ones_like(ps) | |
feather = round(overlap * upscale_amount) | |
for t in range(feather): | |
for d in range(2, dims + 2): | |
m = mask.narrow(d, t, 1) | |
m *= ((1.0 / feather) * (t + 1)) | |
m = mask.narrow(d, mask.shape[d] - 1 - t, 1) | |
m *= ((1.0 / feather) * (t + 1)) | |
o = out | |
o_d = out_div | |
for d in range(dims): | |
o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2]) | |
o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2]) | |
o += ps * mask | |
o_d += mask | |
output[b:b + 1] = out / out_div | |
return output | |
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap): | |
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap))) | |
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap=8, upscale_amount=4, out_channels=3, output_device="cpu"): | |
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device) | |
class VAE: | |
def __init__(self, model=None, device=None, dtype=None, no_init=False): | |
if no_init: | |
return | |
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * memory_management.dtype_size(dtype) | |
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * memory_management.dtype_size(dtype) | |
self.downscale_ratio = int(2 ** (len(model.config.down_block_types) - 1)) | |
self.latent_channels = int(model.config.latent_channels) | |
self.first_stage_model = model.eval() | |
if device is None: | |
device = memory_management.vae_device() | |
self.device = device | |
offload_device = memory_management.vae_offload_device() | |
if dtype is None: | |
dtype = memory_management.vae_dtype() | |
self.vae_dtype = dtype | |
self.first_stage_model.to(self.vae_dtype) | |
self.output_device = memory_management.intermediate_device() | |
self.patcher = ModelPatcher( | |
self.first_stage_model, | |
load_device=self.device, | |
offload_device=offload_device | |
) | |
def clone(self): | |
n = VAE(no_init=True) | |
n.patcher = self.patcher.clone() | |
n.memory_used_encode = self.memory_used_encode | |
n.memory_used_decode = self.memory_used_decode | |
n.downscale_ratio = self.downscale_ratio | |
n.latent_channels = self.latent_channels | |
n.first_stage_model = self.first_stage_model | |
n.device = self.device | |
n.vae_dtype = self.vae_dtype | |
n.output_device = self.output_device | |
return n | |
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap=16): | |
steps = samples.shape[0] * get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) | |
steps += samples.shape[0] * get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) | |
steps += samples.shape[0] * get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap) | |
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float() | |
output = torch.clamp(((tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount=self.downscale_ratio, output_device=self.output_device) + | |
tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount=self.downscale_ratio, output_device=self.output_device) + | |
tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount=self.downscale_ratio, output_device=self.output_device)) | |
/ 3.0) / 2.0, min=0.0, max=1.0) | |
return output | |
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap=64): | |
steps = pixel_samples.shape[0] * get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap) | |
steps += pixel_samples.shape[0] * get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap) | |
steps += pixel_samples.shape[0] * get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap) | |
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float() | |
samples = tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device) | |
samples += tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device) | |
samples += tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device) | |
samples /= 3.0 | |
return samples | |
def decode_inner(self, samples_in): | |
if memory_management.VAE_ALWAYS_TILED: | |
return self.decode_tiled(samples_in).to(self.output_device) | |
try: | |
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) | |
memory_management.load_models_gpu([self.patcher], memory_required=memory_used) | |
free_memory = memory_management.get_free_memory(self.device) | |
batch_number = int(free_memory / memory_used) | |
batch_number = max(1, batch_number) | |
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device) | |
for x in range(0, samples_in.shape[0], batch_number): | |
samples = samples_in[x:x + batch_number].to(self.vae_dtype).to(self.device) | |
pixel_samples[x:x + batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0) | |
except memory_management.OOM_EXCEPTION as e: | |
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") | |
pixel_samples = self.decode_tiled_(samples_in) | |
pixel_samples = pixel_samples.to(self.output_device).movedim(1, -1) | |
return pixel_samples | |
def decode(self, samples_in): | |
wrapper = self.patcher.model_options.get('model_vae_decode_wrapper', None) | |
if wrapper is None: | |
return self.decode_inner(samples_in) | |
else: | |
return wrapper(self.decode_inner, samples_in) | |
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap=16): | |
memory_management.load_model_gpu(self.patcher) | |
output = self.decode_tiled_(samples, tile_x, tile_y, overlap) | |
return output.movedim(1, -1) | |
def encode_inner(self, pixel_samples): | |
if memory_management.VAE_ALWAYS_TILED: | |
return self.encode_tiled(pixel_samples) | |
regulation = self.patcher.model_options.get("model_vae_regulation", None) | |
pixel_samples = pixel_samples.movedim(-1, 1) | |
try: | |
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) | |
memory_management.load_models_gpu([self.patcher], memory_required=memory_used) | |
free_memory = memory_management.get_free_memory(self.device) | |
batch_number = int(free_memory / memory_used) | |
batch_number = max(1, batch_number) | |
samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device) | |
for x in range(0, pixel_samples.shape[0], batch_number): | |
pixels_in = (2. * pixel_samples[x:x + batch_number] - 1.).to(self.vae_dtype).to(self.device) | |
samples[x:x + batch_number] = self.first_stage_model.encode(pixels_in, regulation).to(self.output_device).float() | |
except memory_management.OOM_EXCEPTION as e: | |
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") | |
samples = self.encode_tiled_(pixel_samples) | |
return samples | |
def encode(self, pixel_samples): | |
wrapper = self.patcher.model_options.get('model_vae_encode_wrapper', None) | |
if wrapper is None: | |
return self.encode_inner(pixel_samples) | |
else: | |
return wrapper(self.encode_inner, pixel_samples) | |
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap=64): | |
memory_management.load_model_gpu(self.patcher) | |
pixel_samples = pixel_samples.movedim(-1, 1) | |
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) | |
return samples | |