moistdio's picture
Upload folder using huggingface_hub
6831a54 verified
import torch
import math
import itertools
from tqdm import trange
from backend import memory_management
from backend.patcher.base import ModelPatcher
@torch.inference_mode()
def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu"):
dims = len(tile)
output = torch.empty([samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])), device=output_device)
for b in trange(samples.shape[0]):
s = samples[b:b + 1]
out = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device)
out_div = torch.zeros([s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])), device=output_device)
for it in itertools.product(*map(lambda a: range(0, a[0], a[1] - overlap), zip(s.shape[2:], tile))):
s_in = s
upscaled = []
for d in range(dims):
pos = max(0, min(s.shape[d + 2] - overlap, it[d]))
l = min(tile[d], s.shape[d + 2] - pos)
s_in = s_in.narrow(d + 2, pos, l)
upscaled.append(round(pos * upscale_amount))
ps = function(s_in).to(output_device)
mask = torch.ones_like(ps)
feather = round(overlap * upscale_amount)
for t in range(feather):
for d in range(2, dims + 2):
m = mask.narrow(d, t, 1)
m *= ((1.0 / feather) * (t + 1))
m = mask.narrow(d, mask.shape[d] - 1 - t, 1)
m *= ((1.0 / feather) * (t + 1))
o = out
o_d = out_div
for d in range(dims):
o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])
o += ps * mask
o_d += mask
output[b:b + 1] = out / out_div
return output
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap=8, upscale_amount=4, out_channels=3, output_device="cpu"):
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device)
class VAE:
def __init__(self, model=None, device=None, dtype=None, no_init=False):
if no_init:
return
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * memory_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * memory_management.dtype_size(dtype)
self.downscale_ratio = int(2 ** (len(model.config.down_block_types) - 1))
self.latent_channels = int(model.config.latent_channels)
self.first_stage_model = model.eval()
if device is None:
device = memory_management.vae_device()
self.device = device
offload_device = memory_management.vae_offload_device()
if dtype is None:
dtype = memory_management.vae_dtype()
self.vae_dtype = dtype
self.first_stage_model.to(self.vae_dtype)
self.output_device = memory_management.intermediate_device()
self.patcher = ModelPatcher(
self.first_stage_model,
load_device=self.device,
offload_device=offload_device
)
def clone(self):
n = VAE(no_init=True)
n.patcher = self.patcher.clone()
n.memory_used_encode = self.memory_used_encode
n.memory_used_decode = self.memory_used_decode
n.downscale_ratio = self.downscale_ratio
n.latent_channels = self.latent_channels
n.first_stage_model = self.first_stage_model
n.device = self.device
n.vae_dtype = self.vae_dtype
n.output_device = self.output_device
return n
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap=16):
steps = samples.shape[0] * get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
steps += samples.shape[0] * get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += samples.shape[0] * get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
output = torch.clamp(((tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount=self.downscale_ratio, output_device=self.output_device) +
tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount=self.downscale_ratio, output_device=self.output_device) +
tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount=self.downscale_ratio, output_device=self.output_device))
/ 3.0) / 2.0, min=0.0, max=1.0)
return output
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap=64):
steps = pixel_samples.shape[0] * get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
steps += pixel_samples.shape[0] * get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
steps += pixel_samples.shape[0] * get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
samples = tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
samples += tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
samples += tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount=(1 / self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
samples /= 3.0
return samples
def decode_inner(self, samples_in):
if memory_management.VAE_ALWAYS_TILED:
return self.decode_tiled(samples_in).to(self.output_device)
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
memory_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = memory_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device)
for x in range(0, samples_in.shape[0], batch_number):
samples = samples_in[x:x + batch_number].to(self.vae_dtype).to(self.device)
pixel_samples[x:x + batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0)
except memory_management.OOM_EXCEPTION as e:
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
pixel_samples = self.decode_tiled_(samples_in)
pixel_samples = pixel_samples.to(self.output_device).movedim(1, -1)
return pixel_samples
def decode(self, samples_in):
wrapper = self.patcher.model_options.get('model_vae_decode_wrapper', None)
if wrapper is None:
return self.decode_inner(samples_in)
else:
return wrapper(self.decode_inner, samples_in)
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap=16):
memory_management.load_model_gpu(self.patcher)
output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
return output.movedim(1, -1)
def encode_inner(self, pixel_samples):
if memory_management.VAE_ALWAYS_TILED:
return self.encode_tiled(pixel_samples)
regulation = self.patcher.model_options.get("model_vae_regulation", None)
pixel_samples = pixel_samples.movedim(-1, 1)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
memory_management.load_models_gpu([self.patcher], memory_required=memory_used)
free_memory = memory_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device)
for x in range(0, pixel_samples.shape[0], batch_number):
pixels_in = (2. * pixel_samples[x:x + batch_number] - 1.).to(self.vae_dtype).to(self.device)
samples[x:x + batch_number] = self.first_stage_model.encode(pixels_in, regulation).to(self.output_device).float()
except memory_management.OOM_EXCEPTION as e:
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
samples = self.encode_tiled_(pixel_samples)
return samples
def encode(self, pixel_samples):
wrapper = self.patcher.model_options.get('model_vae_encode_wrapper', None)
if wrapper is None:
return self.encode_inner(pixel_samples)
else:
return wrapper(self.encode_inner, pixel_samples)
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap=64):
memory_management.load_model_gpu(self.patcher)
pixel_samples = pixel_samples.movedim(-1, 1)
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
return samples