Spaces:
Runtime error
Runtime error
import torch | |
from backend.utils import load_torch_file | |
from backend.state_dict import transformers_convert, state_dict_prefix_replace | |
from backend import operations, memory_management | |
from backend.patcher.base import ModelPatcher | |
from transformers import modeling_utils, CLIPVisionConfig, CLIPVisionModelWithProjection | |
CLIP_VISION_G = { | |
"attention_dropout": 0.0, | |
"dropout": 0.0, | |
"hidden_act": "gelu", | |
"hidden_size": 1664, | |
"image_size": 224, | |
"initializer_factor": 1.0, | |
"initializer_range": 0.02, | |
"intermediate_size": 8192, | |
"layer_norm_eps": 1e-05, | |
"model_type": "clip_vision_model", | |
"num_attention_heads": 16, | |
"num_channels": 3, | |
"num_hidden_layers": 48, | |
"patch_size": 14, | |
"projection_dim": 1280, | |
"torch_dtype": "float32" | |
} | |
CLIP_VISION_H = { | |
"attention_dropout": 0.0, | |
"dropout": 0.0, | |
"hidden_act": "gelu", | |
"hidden_size": 1280, | |
"image_size": 224, | |
"initializer_factor": 1.0, | |
"initializer_range": 0.02, | |
"intermediate_size": 5120, | |
"layer_norm_eps": 1e-05, | |
"model_type": "clip_vision_model", | |
"num_attention_heads": 16, | |
"num_channels": 3, | |
"num_hidden_layers": 32, | |
"patch_size": 14, | |
"projection_dim": 1024, | |
"torch_dtype": "float32" | |
} | |
CLIP_VISION_VITL = { | |
"attention_dropout": 0.0, | |
"dropout": 0.0, | |
"hidden_act": "quick_gelu", | |
"hidden_size": 1024, | |
"image_size": 224, | |
"initializer_factor": 1.0, | |
"initializer_range": 0.02, | |
"intermediate_size": 4096, | |
"layer_norm_eps": 1e-05, | |
"model_type": "clip_vision_model", | |
"num_attention_heads": 16, | |
"num_channels": 3, | |
"num_hidden_layers": 24, | |
"patch_size": 14, | |
"projection_dim": 768, | |
"torch_dtype": "float32" | |
} | |
class Output: | |
def __getitem__(self, key): | |
return getattr(self, key) | |
def __setitem__(self, key, item): | |
setattr(self, key, item) | |
def clip_preprocess(image, size=224): | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=image.device, dtype=image.dtype) | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=image.device, dtype=image.dtype) | |
image = image.movedim(-1, 1) | |
if not (image.shape[2] == size and image.shape[3] == size): | |
scale = (size / min(image.shape[2], image.shape[3])) | |
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True) | |
h = (image.shape[2] - size) // 2 | |
w = (image.shape[3] - size) // 2 | |
image = image[:, :, h:h + size, w:w + size] | |
image = torch.clip((255. * image), 0, 255).round() / 255.0 | |
return (image - mean.view([3, 1, 1])) / std.view([3, 1, 1]) | |
class ClipVisionModel: | |
def __init__(self, config): | |
config = CLIPVisionConfig(**config) | |
self.load_device = memory_management.text_encoder_device() | |
self.offload_device = memory_management.text_encoder_offload_device() | |
if memory_management.should_use_fp16(self.load_device, prioritize_performance=False): | |
self.dtype = torch.float16 | |
else: | |
self.dtype = torch.float32 | |
with operations.using_forge_operations(): | |
with modeling_utils.no_init_weights(): | |
self.model = CLIPVisionModelWithProjection(config) | |
self.model.to(self.dtype) | |
self.patcher = ModelPatcher( | |
self.model, | |
load_device=self.load_device, | |
offload_device=self.offload_device | |
) | |
def load_sd(self, sd): | |
return self.model.load_state_dict(sd, strict=False) | |
def get_sd(self): | |
return self.model.state_dict() | |
def encode_image(self, image): | |
memory_management.load_model_gpu(self.patcher) | |
pixel_values = clip_preprocess(image.to(self.load_device)) | |
outputs = self.model(pixel_values=pixel_values, output_hidden_states=True) | |
o = Output() | |
o["last_hidden_state"] = outputs.last_hidden_state.to(memory_management.intermediate_device()) | |
o["penultimate_hidden_states"] = outputs.hidden_states[-2].to(memory_management.intermediate_device()) | |
o["image_embeds"] = outputs.image_embeds.to(memory_management.intermediate_device()) | |
return o | |
def convert_to_transformers(sd, prefix): | |
sd_k = sd.keys() | |
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: | |
keys_to_replace = { | |
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", | |
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", | |
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", | |
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", | |
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", | |
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", | |
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", | |
} | |
for x in keys_to_replace: | |
if x in sd_k: | |
sd[keys_to_replace[x]] = sd.pop(x) | |
if "{}proj".format(prefix) in sd_k: | |
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) | |
sd = transformers_convert(sd, prefix, "vision_model.", 48) | |
else: | |
replace_prefix = {prefix: ""} | |
sd = state_dict_prefix_replace(sd, replace_prefix) | |
return sd | |
def load_clipvision_from_sd(sd, prefix="", convert_keys=False): | |
if convert_keys: | |
sd = convert_to_transformers(sd, prefix) | |
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd: | |
config = CLIP_VISION_G | |
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: | |
config = CLIP_VISION_H | |
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: | |
config = CLIP_VISION_VITL | |
else: | |
return None | |
clip = ClipVisionModel(config) | |
m, u = clip.load_sd(sd) | |
if len(m) > 0: | |
print("extra clip vision:", m) | |
u = set(u) | |
keys = list(sd.keys()) | |
for k in keys: | |
if k not in u: | |
t = sd.pop(k) | |
del t | |
return clip | |
def load(ckpt_path): | |
sd = load_torch_file(ckpt_path) | |
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd: | |
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True) | |
else: | |
return load_clipvision_from_sd(sd) | |