Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from PIL import Image | |
def bislerp(samples, width, height): | |
def slerp(b1, b2, r): | |
'''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC''' | |
c = b1.shape[-1] | |
# norms | |
b1_norms = torch.norm(b1, dim=-1, keepdim=True) | |
b2_norms = torch.norm(b2, dim=-1, keepdim=True) | |
# normalize | |
b1_normalized = b1 / b1_norms | |
b2_normalized = b2 / b2_norms | |
# zero when norms are zero | |
b1_normalized[b1_norms.expand(-1, c) == 0.0] = 0.0 | |
b2_normalized[b2_norms.expand(-1, c) == 0.0] = 0.0 | |
# slerp | |
dot = (b1_normalized * b2_normalized).sum(1) | |
omega = torch.acos(dot) | |
so = torch.sin(omega) | |
# technically not mathematically correct, but more pleasing? | |
res = (torch.sin((1.0 - r.squeeze(1)) * omega) / so).unsqueeze(1) * b1_normalized + (torch.sin(r.squeeze(1) * omega) / so).unsqueeze(1) * b2_normalized | |
res *= (b1_norms * (1.0 - r) + b2_norms * r).expand(-1, c) | |
# edge cases for same or polar opposites | |
res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] | |
res[dot < 1e-5 - 1] = (b1 * (1.0 - r) + b2 * r)[dot < 1e-5 - 1] | |
return res | |
def generate_bilinear_data(length_old, length_new, device): | |
coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1, 1, 1, -1)) | |
coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear") | |
ratios = coords_1 - coords_1.floor() | |
coords_1 = coords_1.to(torch.int64) | |
coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1, 1, 1, -1)) + 1 | |
coords_2[:, :, :, -1] -= 1 | |
coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear") | |
coords_2 = coords_2.to(torch.int64) | |
return ratios, coords_1, coords_2 | |
orig_dtype = samples.dtype | |
samples = samples.float() | |
n, c, h, w = samples.shape | |
h_new, w_new = (height, width) | |
# linear w | |
ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) | |
coords_1 = coords_1.expand((n, c, h, -1)) | |
coords_2 = coords_2.expand((n, c, h, -1)) | |
ratios = ratios.expand((n, 1, h, -1)) | |
pass_1 = samples.gather(-1, coords_1).movedim(1, -1).reshape((-1, c)) | |
pass_2 = samples.gather(-1, coords_2).movedim(1, -1).reshape((-1, c)) | |
ratios = ratios.movedim(1, -1).reshape((-1, 1)) | |
result = slerp(pass_1, pass_2, ratios) | |
result = result.reshape(n, h, w_new, c).movedim(-1, 1) | |
# linear h | |
ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) | |
coords_1 = coords_1.reshape((1, 1, -1, 1)).expand((n, c, -1, w_new)) | |
coords_2 = coords_2.reshape((1, 1, -1, 1)).expand((n, c, -1, w_new)) | |
ratios = ratios.reshape((1, 1, -1, 1)).expand((n, 1, -1, w_new)) | |
pass_1 = result.gather(-2, coords_1).movedim(1, -1).reshape((-1, c)) | |
pass_2 = result.gather(-2, coords_2).movedim(1, -1).reshape((-1, c)) | |
ratios = ratios.movedim(1, -1).reshape((-1, 1)) | |
result = slerp(pass_1, pass_2, ratios) | |
result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) | |
return result.to(orig_dtype) | |
def lanczos(samples, width, height): | |
images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] | |
images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] | |
images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] | |
result = torch.stack(images) | |
return result.to(samples.device, samples.dtype) | |
def adaptive_resize(samples, width, height, upscale_method, crop): | |
if crop == "center": | |
old_width = samples.shape[3] | |
old_height = samples.shape[2] | |
old_aspect = old_width / old_height | |
new_aspect = width / height | |
x = 0 | |
y = 0 | |
if old_aspect > new_aspect: | |
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) | |
elif old_aspect < new_aspect: | |
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) | |
s = samples[:, :, y:old_height - y, x:old_width - x] | |
else: | |
s = samples | |
if upscale_method == "bislerp": | |
return bislerp(s, width, height) | |
elif upscale_method == "lanczos": | |
return lanczos(s, width, height) | |
else: | |
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) | |