Spaces:
Runtime error
Runtime error
import torch | |
from huggingface_guess import model_list | |
from backend.diffusion_engine.base import ForgeDiffusionEngine, ForgeObjects | |
from backend.patcher.clip import CLIP | |
from backend.patcher.vae import VAE | |
from backend.patcher.unet import UnetPatcher | |
from backend.text_processing.classic_engine import ClassicTextProcessingEngine | |
from backend.text_processing.t5_engine import T5TextProcessingEngine | |
from backend.args import dynamic_args | |
from backend.modules.k_prediction import PredictionFlux | |
from backend import memory_management | |
class Flux(ForgeDiffusionEngine): | |
matched_guesses = [model_list.Flux, model_list.FluxSchnell] | |
def __init__(self, estimated_config, huggingface_components): | |
super().__init__(estimated_config, huggingface_components) | |
self.is_inpaint = False | |
clip = CLIP( | |
model_dict={ | |
'clip_l': huggingface_components['text_encoder'], | |
't5xxl': huggingface_components['text_encoder_2'] | |
}, | |
tokenizer_dict={ | |
'clip_l': huggingface_components['tokenizer'], | |
't5xxl': huggingface_components['tokenizer_2'] | |
} | |
) | |
vae = VAE(model=huggingface_components['vae']) | |
if 'schnell' in estimated_config.huggingface_repo.lower(): | |
k_predictor = PredictionFlux(sigma_data=1.0, prediction_type='const', shift=1.0, timesteps=10000) | |
else: | |
k_predictor = PredictionFlux(sigma_data=1.0, prediction_type='const', shift=1.15, timesteps=10000) | |
self.use_distilled_cfg_scale = True | |
unet = UnetPatcher.from_model( | |
model=huggingface_components['transformer'], | |
diffusers_scheduler=None, | |
k_predictor=k_predictor, | |
config=estimated_config | |
) | |
self.text_processing_engine_l = ClassicTextProcessingEngine( | |
text_encoder=clip.cond_stage_model.clip_l, | |
tokenizer=clip.tokenizer.clip_l, | |
embedding_dir=dynamic_args['embedding_dir'], | |
embedding_key='clip_l', | |
embedding_expected_shape=768, | |
emphasis_name=dynamic_args['emphasis_name'], | |
text_projection=False, | |
minimal_clip_skip=1, | |
clip_skip=1, | |
return_pooled=True, | |
final_layer_norm=True, | |
) | |
self.text_processing_engine_t5 = T5TextProcessingEngine( | |
text_encoder=clip.cond_stage_model.t5xxl, | |
tokenizer=clip.tokenizer.t5xxl, | |
emphasis_name=dynamic_args['emphasis_name'], | |
) | |
self.forge_objects = ForgeObjects(unet=unet, clip=clip, vae=vae, clipvision=None) | |
self.forge_objects_original = self.forge_objects.shallow_copy() | |
self.forge_objects_after_applying_lora = self.forge_objects.shallow_copy() | |
def set_clip_skip(self, clip_skip): | |
self.text_processing_engine_l.clip_skip = clip_skip | |
def get_learned_conditioning(self, prompt: list[str]): | |
memory_management.load_model_gpu(self.forge_objects.clip.patcher) | |
cond_l, pooled_l = self.text_processing_engine_l(prompt) | |
cond_t5 = self.text_processing_engine_t5(prompt) | |
cond = dict(crossattn=cond_t5, vector=pooled_l) | |
if self.use_distilled_cfg_scale: | |
distilled_cfg_scale = getattr(prompt, 'distilled_cfg_scale', 3.5) or 3.5 | |
cond['guidance'] = torch.FloatTensor([distilled_cfg_scale] * len(prompt)) | |
print(f'Distilled CFG Scale: {distilled_cfg_scale}') | |
else: | |
print('Distilled CFG Scale will be ignored for Schnell') | |
return cond | |
def get_prompt_lengths_on_ui(self, prompt): | |
token_count = len(self.text_processing_engine_t5.tokenize([prompt])[0]) | |
return token_count, max(255, token_count) | |
def encode_first_stage(self, x): | |
sample = self.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5) | |
sample = self.forge_objects.vae.first_stage_model.process_in(sample) | |
return sample.to(x) | |
def decode_first_stage(self, x): | |
sample = self.forge_objects.vae.first_stage_model.process_out(x) | |
sample = self.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0 | |
return sample.to(x) | |