File size: 6,184 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from modules_forge.initialization import initialize_forge

initialize_forge()

import os
import torch
import inspect
import functools
import gradio.oauth
import gradio.routes

from backend import memory_management
from backend.operations import DynamicSwapInstaller
from diffusers.models import modeling_utils as diffusers_modeling_utils
from transformers import modeling_utils as transformers_modeling_utils
from backend.attention import AttentionProcessorForge
from starlette.requests import Request


_original_init = Request.__init__


def patched_init(self, scope, receive=None, send=None):
    if 'session' not in scope:
        scope['session'] = dict()
    _original_init(self, scope, receive, send)
    return


Request.__init__ = patched_init
gradio.oauth.attach_oauth = lambda x: None
gradio.routes.attach_oauth = lambda x: None

ALWAYS_SWAP = False

module_in_gpu: torch.nn.Module = None
gpu = memory_management.get_torch_device()
cpu = torch.device('cpu')

diffusers_modeling_utils.get_parameter_device = lambda *args, **kwargs: gpu
transformers_modeling_utils.get_parameter_device = lambda *args, **kwargs: gpu


def unload_module():
    global module_in_gpu

    if module_in_gpu is None:
        return

    DynamicSwapInstaller.uninstall_model(module_in_gpu)
    module_in_gpu.to(cpu)
    print(f'Move module to CPU: {type(module_in_gpu).__name__}')

    module_in_gpu = None
    memory_management.soft_empty_cache()
    return


def load_module(m):
    global module_in_gpu

    if module_in_gpu == m:
        return

    unload_module()

    model_memory = memory_management.module_size(m)
    current_free_mem = memory_management.get_free_memory(gpu)
    inference_memory = 1.5 * 1024 * 1024 * 1024  # memory_management.minimum_inference_memory() # TODO: connect to main memory system
    estimated_remaining_memory = current_free_mem - model_memory - inference_memory

    print(f"[Memory Management] Current Free GPU Memory: {current_free_mem / (1024 * 1024):.2f} MB")
    print(f"[Memory Management] Required Model Memory: {model_memory / (1024 * 1024):.2f} MB")
    print(f"[Memory Management] Required Inference Memory: {inference_memory / (1024 * 1024):.2f} MB")
    print(f"[Memory Management] Estimated Remaining GPU Memory: {estimated_remaining_memory / (1024 * 1024):.2f} MB")

    if ALWAYS_SWAP or estimated_remaining_memory < 0:
        print(f'Move module to SWAP: {type(m).__name__}')
        DynamicSwapInstaller.install_model(m, target_device=gpu)
    else:
        print(f'Move module to GPU: {type(m).__name__}')
        m.to(gpu)

    module_in_gpu = m
    return


class GPUObject:
    def __init__(self):
        self.module_list = []

    def __enter__(self):
        self.original_init = torch.nn.Module.__init__
        self.original_to = torch.nn.Module.to

        def patched_init(module, *args, **kwargs):
            self.module_list.append(module)
            return self.original_init(module, *args, **kwargs)

        def patched_to(module, *args, **kwargs):
            self.module_list.append(module)
            return self.original_to(module, *args, **kwargs)

        torch.nn.Module.__init__ = patched_init
        torch.nn.Module.to = patched_to
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        torch.nn.Module.__init__ = self.original_init
        torch.nn.Module.to = self.original_to
        self.module_list = set(self.module_list)
        self.to(device=torch.device('cpu'))
        memory_management.soft_empty_cache()
        return

    def to(self, device):
        for module in self.module_list:
            module.to(device)
        print(f'Forge Space: Moved {len(self.module_list)} Modules to {device}')
        return self

    def gpu(self):
        self.to(device=gpu)
        return self


def capture_gpu_object():
    return GPUObject()


def GPU(gpu_objects=None, manual_load=False):
    gpu_objects = gpu_objects or []

    if not isinstance(gpu_objects, (list, tuple)):
        gpu_objects = [gpu_objects]

    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            print("Entering Forge Space GPU ...")
            memory_management.unload_all_models()
            if not manual_load:
                for o in gpu_objects:
                    o.gpu()
            result = func(*args, **kwargs)
            print("Cleaning Forge Space GPU ...")
            unload_module()
            for o in gpu_objects:
                o.to(device=torch.device('cpu'))
            memory_management.soft_empty_cache()
            return result
        return wrapper
    return decorator


def convert_root_path():
    frame = inspect.currentframe().f_back
    caller_file = frame.f_code.co_filename
    caller_file = os.path.abspath(caller_file)
    result = os.path.join(os.path.dirname(caller_file), 'huggingface_space_mirror')
    return result + '/'


def automatically_move_to_gpu_when_forward(m: torch.nn.Module, target_model: torch.nn.Module = None):
    if target_model is None:
        target_model = m

    def patch_method(method_name):
        if not hasattr(m, method_name):
            return

        if not hasattr(m, 'forge_space_hooked_names'):
            m.forge_space_hooked_names = []

        if method_name in m.forge_space_hooked_names:
            return

        print(f'Automatic hook: {type(m).__name__}.{method_name}')

        original_method = getattr(m, method_name)

        def patched_method(*args, **kwargs):
            load_module(target_model)
            return original_method(*args, **kwargs)

        setattr(m, method_name, patched_method)

        m.forge_space_hooked_names.append(method_name)
        return

    for method_name in ['forward', 'encode', 'decode']:
        patch_method(method_name)

    return


def automatically_move_pipeline_components(pipe):
    for attr_name in dir(pipe):
        attr_value = getattr(pipe, attr_name, None)
        if isinstance(attr_value, torch.nn.Module):
            automatically_move_to_gpu_when_forward(attr_value)
    return


def change_attention_from_diffusers_to_forge(m):
    m.set_attn_processor(AttentionProcessorForge())
    return