Spaces:
Runtime error
Runtime error
File size: 6,184 Bytes
6831a54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from modules_forge.initialization import initialize_forge
initialize_forge()
import os
import torch
import inspect
import functools
import gradio.oauth
import gradio.routes
from backend import memory_management
from backend.operations import DynamicSwapInstaller
from diffusers.models import modeling_utils as diffusers_modeling_utils
from transformers import modeling_utils as transformers_modeling_utils
from backend.attention import AttentionProcessorForge
from starlette.requests import Request
_original_init = Request.__init__
def patched_init(self, scope, receive=None, send=None):
if 'session' not in scope:
scope['session'] = dict()
_original_init(self, scope, receive, send)
return
Request.__init__ = patched_init
gradio.oauth.attach_oauth = lambda x: None
gradio.routes.attach_oauth = lambda x: None
ALWAYS_SWAP = False
module_in_gpu: torch.nn.Module = None
gpu = memory_management.get_torch_device()
cpu = torch.device('cpu')
diffusers_modeling_utils.get_parameter_device = lambda *args, **kwargs: gpu
transformers_modeling_utils.get_parameter_device = lambda *args, **kwargs: gpu
def unload_module():
global module_in_gpu
if module_in_gpu is None:
return
DynamicSwapInstaller.uninstall_model(module_in_gpu)
module_in_gpu.to(cpu)
print(f'Move module to CPU: {type(module_in_gpu).__name__}')
module_in_gpu = None
memory_management.soft_empty_cache()
return
def load_module(m):
global module_in_gpu
if module_in_gpu == m:
return
unload_module()
model_memory = memory_management.module_size(m)
current_free_mem = memory_management.get_free_memory(gpu)
inference_memory = 1.5 * 1024 * 1024 * 1024 # memory_management.minimum_inference_memory() # TODO: connect to main memory system
estimated_remaining_memory = current_free_mem - model_memory - inference_memory
print(f"[Memory Management] Current Free GPU Memory: {current_free_mem / (1024 * 1024):.2f} MB")
print(f"[Memory Management] Required Model Memory: {model_memory / (1024 * 1024):.2f} MB")
print(f"[Memory Management] Required Inference Memory: {inference_memory / (1024 * 1024):.2f} MB")
print(f"[Memory Management] Estimated Remaining GPU Memory: {estimated_remaining_memory / (1024 * 1024):.2f} MB")
if ALWAYS_SWAP or estimated_remaining_memory < 0:
print(f'Move module to SWAP: {type(m).__name__}')
DynamicSwapInstaller.install_model(m, target_device=gpu)
else:
print(f'Move module to GPU: {type(m).__name__}')
m.to(gpu)
module_in_gpu = m
return
class GPUObject:
def __init__(self):
self.module_list = []
def __enter__(self):
self.original_init = torch.nn.Module.__init__
self.original_to = torch.nn.Module.to
def patched_init(module, *args, **kwargs):
self.module_list.append(module)
return self.original_init(module, *args, **kwargs)
def patched_to(module, *args, **kwargs):
self.module_list.append(module)
return self.original_to(module, *args, **kwargs)
torch.nn.Module.__init__ = patched_init
torch.nn.Module.to = patched_to
return self
def __exit__(self, exc_type, exc_val, exc_tb):
torch.nn.Module.__init__ = self.original_init
torch.nn.Module.to = self.original_to
self.module_list = set(self.module_list)
self.to(device=torch.device('cpu'))
memory_management.soft_empty_cache()
return
def to(self, device):
for module in self.module_list:
module.to(device)
print(f'Forge Space: Moved {len(self.module_list)} Modules to {device}')
return self
def gpu(self):
self.to(device=gpu)
return self
def capture_gpu_object():
return GPUObject()
def GPU(gpu_objects=None, manual_load=False):
gpu_objects = gpu_objects or []
if not isinstance(gpu_objects, (list, tuple)):
gpu_objects = [gpu_objects]
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print("Entering Forge Space GPU ...")
memory_management.unload_all_models()
if not manual_load:
for o in gpu_objects:
o.gpu()
result = func(*args, **kwargs)
print("Cleaning Forge Space GPU ...")
unload_module()
for o in gpu_objects:
o.to(device=torch.device('cpu'))
memory_management.soft_empty_cache()
return result
return wrapper
return decorator
def convert_root_path():
frame = inspect.currentframe().f_back
caller_file = frame.f_code.co_filename
caller_file = os.path.abspath(caller_file)
result = os.path.join(os.path.dirname(caller_file), 'huggingface_space_mirror')
return result + '/'
def automatically_move_to_gpu_when_forward(m: torch.nn.Module, target_model: torch.nn.Module = None):
if target_model is None:
target_model = m
def patch_method(method_name):
if not hasattr(m, method_name):
return
if not hasattr(m, 'forge_space_hooked_names'):
m.forge_space_hooked_names = []
if method_name in m.forge_space_hooked_names:
return
print(f'Automatic hook: {type(m).__name__}.{method_name}')
original_method = getattr(m, method_name)
def patched_method(*args, **kwargs):
load_module(target_model)
return original_method(*args, **kwargs)
setattr(m, method_name, patched_method)
m.forge_space_hooked_names.append(method_name)
return
for method_name in ['forward', 'encode', 'decode']:
patch_method(method_name)
return
def automatically_move_pipeline_components(pipe):
for attr_name in dir(pipe):
attr_value = getattr(pipe, attr_name, None)
if isinstance(attr_value, torch.nn.Module):
automatically_move_to_gpu_when_forward(attr_value)
return
def change_attention_from_diffusers_to_forge(m):
m.set_attn_processor(AttentionProcessorForge())
return
|