Spaces:
Runtime error
Runtime error
File size: 24,206 Bytes
6831a54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
import torch
import math
from backend.misc import image_resize
from backend import memory_management, state_dict, utils
from backend.nn.cnets import cldm, t2i_adapter
from backend.patcher.base import ModelPatcher
from backend.operations import using_forge_operations, ForgeOperations, main_stream_worker, weights_manual_cast
def apply_controlnet_advanced(
unet,
controlnet,
image_bchw,
strength,
start_percent,
end_percent,
positive_advanced_weighting=None,
negative_advanced_weighting=None,
advanced_frame_weighting=None,
advanced_sigma_weighting=None,
advanced_mask_weighting=None
):
"""
# positive_advanced_weighting or negative_advanced_weighting
Unet has input, middle, output blocks, and we can give different weights to each layers in all blocks.
Below is an example for stronger control in middle block.
This is helpful for some high-res fix passes.
positive_advanced_weighting = {
'input': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2],
'middle': [1.0],
'output': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
}
negative_advanced_weighting = {
'input': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2],
'middle': [1.0],
'output': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
}
# advanced_frame_weighting
The advanced_frame_weighting is a weight applied to each image in a batch.
The length of this list must be same with batch size
For example, if batch size is 5, you can use advanced_frame_weighting = [0, 0.25, 0.5, 0.75, 1.0]
If you view the 5 images as 5 frames in a video, this will lead to progressively stronger control over time.
# advanced_sigma_weighting
The advanced_sigma_weighting allows you to dynamically compute control
weights given diffusion timestep (sigma).
For example below code can softly make beginning steps stronger than ending steps.
sigma_max = unet.model.model_sampling.sigma_max
sigma_min = unet.model.model_sampling.sigma_min
advanced_sigma_weighting = lambda s: (s - sigma_min) / (sigma_max - sigma_min)
# advanced_mask_weighting
A mask can be applied to control signals.
This should be a tensor with shape B 1 H W where the H and W can be arbitrary.
This mask will be resized automatically to match the shape of all injection layers.
"""
cnet = controlnet.copy().set_cond_hint(image_bchw, strength, (start_percent, end_percent))
cnet.positive_advanced_weighting = positive_advanced_weighting
cnet.negative_advanced_weighting = negative_advanced_weighting
cnet.advanced_frame_weighting = advanced_frame_weighting
cnet.advanced_sigma_weighting = advanced_sigma_weighting
if advanced_mask_weighting is not None:
assert isinstance(advanced_mask_weighting, torch.Tensor)
B, C, H, W = advanced_mask_weighting.shape
assert B > 0 and C == 1 and H > 0 and W > 0
cnet.advanced_mask_weighting = advanced_mask_weighting
m = unet.clone()
m.add_patched_controlnet(cnet)
return m
def compute_controlnet_weighting(control, cnet):
positive_advanced_weighting = getattr(cnet, 'positive_advanced_weighting', None)
negative_advanced_weighting = getattr(cnet, 'negative_advanced_weighting', None)
advanced_frame_weighting = getattr(cnet, 'advanced_frame_weighting', None)
advanced_sigma_weighting = getattr(cnet, 'advanced_sigma_weighting', None)
advanced_mask_weighting = getattr(cnet, 'advanced_mask_weighting', None)
transformer_options = cnet.transformer_options
if positive_advanced_weighting is None and negative_advanced_weighting is None \
and advanced_frame_weighting is None and advanced_sigma_weighting is None \
and advanced_mask_weighting is None:
return control
cond_or_uncond = transformer_options['cond_or_uncond']
sigmas = transformer_options['sigmas']
cond_mark = transformer_options['cond_mark']
if advanced_frame_weighting is not None:
advanced_frame_weighting = torch.Tensor(advanced_frame_weighting * len(cond_or_uncond)).to(sigmas)
assert advanced_frame_weighting.shape[0] == cond_mark.shape[0], \
'Frame weighting list length is different from batch size!'
if advanced_sigma_weighting is not None:
advanced_sigma_weighting = torch.cat([advanced_sigma_weighting(sigmas)] * len(cond_or_uncond))
for k, v in control.items():
for i in range(len(v)):
control_signal = control[k][i]
if not isinstance(control_signal, torch.Tensor):
continue
B, C, H, W = control_signal.shape
positive_weight = 1.0
negative_weight = 1.0
sigma_weight = 1.0
frame_weight = 1.0
if positive_advanced_weighting is not None:
positive_weight = get_at(positive_advanced_weighting.get(k, []), i, 1.0)
if negative_advanced_weighting is not None:
negative_weight = get_at(negative_advanced_weighting.get(k, []), i, 1.0)
if advanced_sigma_weighting is not None:
sigma_weight = advanced_sigma_weighting
if advanced_frame_weighting is not None:
frame_weight = advanced_frame_weighting
final_weight = positive_weight * (1.0 - cond_mark) + negative_weight * cond_mark
final_weight = final_weight * sigma_weight * frame_weight
if isinstance(advanced_mask_weighting, torch.Tensor):
if advanced_mask_weighting.shape[0] != 1:
k_ = int(control_signal.shape[0] // advanced_mask_weighting.shape[0])
if control_signal.shape[0] == k_ * advanced_mask_weighting.shape[0]:
advanced_mask_weighting = advanced_mask_weighting.repeat(k_, 1, 1, 1)
control_signal = control_signal * torch.nn.functional.interpolate(advanced_mask_weighting.to(control_signal), size=(H, W), mode='bilinear')
control[k][i] = control_signal * final_weight[:, None, None, None]
return control
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
if current_batch_size == 1:
return tensor
per_batch = target_batch_size // batched_number
tensor = tensor[:per_batch]
if per_batch > tensor.shape[0]:
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
current_batch_size = tensor.shape[0]
if current_batch_size == target_batch_size:
return tensor
else:
return torch.cat([tensor] * batched_number, dim=0)
def get_at(array, index, default=None):
return array[index] if 0 <= index < len(array) else default
class ControlBase:
def __init__(self, device=None):
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
self.timestep_percent_range = (0.0, 1.0)
self.global_average_pooling = False
self.timestep_range = None
self.transformer_options = {}
if device is None:
device = memory_management.get_torch_device()
self.device = device
self.previous_controlnet = None
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
self.cond_hint_original = cond_hint
self.strength = strength
self.timestep_percent_range = timestep_percent_range
return self
def pre_run(self, model, percent_to_timestep_function):
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
if self.previous_controlnet is not None:
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.timestep_range = None
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
c.global_average_pooling = self.global_average_pooling
def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None:
return self.previous_controlnet.inference_memory_requirements(dtype)
return 0
def control_merge(self, control_input, control_output, control_prev, output_dtype):
out = {'input': [], 'middle': [], 'output': []}
if control_input is not None:
for i in range(len(control_input)):
key = 'input'
x = control_input[i]
if x is not None:
x *= self.strength
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].insert(0, x)
if control_output is not None:
for i in range(len(control_output)):
if i == (len(control_output) - 1):
key = 'middle'
index = 0
else:
key = 'output'
index = i
x = control_output[i]
if x is not None:
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
x *= self.strength
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].append(x)
out = compute_controlnet_weighting(out, self)
if control_prev is not None:
for x in ['input', 'middle', 'output']:
o = out[x]
for i in range(len(control_prev[x])):
prev_val = control_prev[x][i]
if i >= len(o):
o.append(prev_val)
elif prev_val is not None:
if o[i] is None:
o[i] = prev_val
else:
if o[i].shape[0] < prev_val.shape[0]:
o[i] = prev_val + o[i]
else:
o[i] += prev_val
return out
class ControlNet(ControlBase):
def __init__(self, control_model, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None):
super().__init__(device)
self.control_model = control_model
self.load_device = load_device
self.control_model_wrapped = ModelPatcher(self.control_model, load_device=load_device, offload_device=memory_management.unet_offload_device())
self.global_average_pooling = global_average_pooling
self.model_sampling_current = None
self.manual_cast_dtype = manual_cast_dtype
def get_control(self, x_noisy, t, cond, batched_number):
to = self.transformer_options
for conditioning_modifier in to.get('controlnet_conditioning_modifiers', []):
x_noisy, t, cond, batched_number = conditioning_modifier(self, x_noisy, t, cond, batched_number)
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
dtype = self.control_model.dtype
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
output_dtype = x_noisy.dtype
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = image_resize.adaptive_resize(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = cond['c_crossattn']
y = cond.get('y', None)
if y is not None:
y = y.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
controlnet_model_function_wrapper = to.get('controlnet_model_function_wrapper', None)
if controlnet_model_function_wrapper is not None:
wrapper_args = dict(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(),
context=context.to(dtype), y=y)
wrapper_args['model'] = self
wrapper_args['inner_model'] = self.control_model
control = controlnet_model_function_wrapper(**wrapper_args)
else:
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint.to(self.device), timesteps=timestep.float(), context=context.to(dtype), y=y)
return self.control_merge(None, control, control_prev, output_dtype)
def copy(self):
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
self.copy_to(c)
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
return out
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
self.model_sampling_current = model.predictor
def cleanup(self):
self.model_sampling_current = None
super().cleanup()
class ControlLoraOps(ForgeOperations):
class Linear(torch.nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.up = None
self.down = None
self.bias = None
def forward(self, input):
weight, bias, signal = weights_manual_cast(self, input)
with main_stream_worker(weight, bias, signal):
if self.up is not None:
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
else:
return torch.nn.functional.linear(input, weight, bias)
class Conv2d(torch.nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode='zeros',
device=None,
dtype=None
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = False
self.output_padding = 0
self.groups = groups
self.padding_mode = padding_mode
self.weight = None
self.bias = None
self.up = None
self.down = None
def forward(self, input):
weight, bias, signal = weights_manual_cast(self, input)
with main_stream_worker(weight, bias, signal):
if self.up is not None:
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, device=None):
ControlBase.__init__(self, device)
self.control_weights = control_weights
self.global_average_pooling = global_average_pooling
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
controlnet_config = model.diffusion_model.config.copy()
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
dtype = model.storage_dtype
if dtype in ['nf4', 'fp4', 'gguf']:
dtype = torch.float16
controlnet_config["dtype"] = dtype
self.manual_cast_dtype = model.computation_dtype
with using_forge_operations(operations=ControlLoraOps, dtype=dtype):
self.control_model = cldm.ControlNet(**controlnet_config)
self.control_model.to(device=memory_management.get_torch_device(), dtype=dtype)
diffusion_model = model.diffusion_model
sd = diffusion_model.state_dict()
for k in sd:
weight = sd[k]
try:
utils.set_attr(self.control_model, k, weight)
except:
pass
for k in self.control_weights:
if k not in {"lora_controlnet"}:
utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(memory_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def cleanup(self):
del self.control_model
self.control_model = None
super().cleanup()
def get_models(self):
out = ControlBase.get_models(self)
return out
def inference_memory_requirements(self, dtype):
return utils.calculate_parameters(self.control_weights) * memory_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
class T2IAdapter(ControlBase):
def __init__(self, t2i_model, channels_in, device=None):
super().__init__(device)
self.t2i_model = t2i_model
self.channels_in = channels_in
self.control_input = None
def scale_image_to(self, width, height):
unshuffle_amount = self.t2i_model.unshuffle_amount
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
return width, height
def get_control(self, x_noisy, t, cond, batched_number):
to = self.transformer_options
for conditioning_modifier in to.get('controlnet_conditioning_modifiers', []):
x_noisy, t, cond, batched_number = conditioning_modifier(self, x_noisy, t, cond, batched_number)
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.control_input = None
self.cond_hint = None
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
self.cond_hint = image_resize.adaptive_resize(self.cond_hint_original, width, height, 'nearest-exact', "center").float()
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_input is None:
self.t2i_model.to(x_noisy.dtype)
self.t2i_model.to(self.device)
controlnet_model_function_wrapper = to.get('controlnet_model_function_wrapper', None)
if controlnet_model_function_wrapper is not None:
wrapper_args = dict(hint=self.cond_hint.to(x_noisy.dtype))
wrapper_args['model'] = self
wrapper_args['inner_model'] = self.t2i_model
wrapper_args['inner_t2i_model'] = self.t2i_model
self.control_input = controlnet_model_function_wrapper(**wrapper_args)
else:
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy))
self.t2i_model.cpu()
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
mid = None
if self.t2i_model.xl == True:
mid = control_input[-1:]
control_input = control_input[:-1]
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in)
self.copy_to(c)
return c
def load_t2i_adapter(t2i_data):
if 'adapter' in t2i_data:
t2i_data = t2i_data['adapter']
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: # diffusers format
prefix_replace = {}
for i in range(4):
for j in range(2):
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
prefix_replace["adapter."] = ""
t2i_data = state_dict.state_dict_prefix_replace(t2i_data, prefix_replace)
keys = t2i_data.keys()
if "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = t2i_adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
elif 'conv_in.weight' in keys:
cin = t2i_data['conv_in.weight'].shape[1]
channel = t2i_data['conv_in.weight'].shape[0]
ksize = t2i_data['body.0.block2.weight'].shape[2]
use_conv = False
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
if len(down_opts) > 0:
use_conv = True
xl = False
if cin == 256 or cin == 768:
xl = True
model_ad = t2i_adapter.Adapter(cin=cin, channels=[channel, channel * 2, channel * 4, channel * 4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
else:
return None
missing, unexpected = model_ad.load_state_dict(t2i_data)
if len(missing) > 0:
print("t2i missing", missing)
if len(unexpected) > 0:
print("t2i unexpected", unexpected)
return T2IAdapter(model_ad, model_ad.input_channels)
|