Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,93 +1,38 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoTokenizer,
|
| 4 |
import torch.nn.functional as F
|
| 5 |
import os
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
super().__init__()
|
| 11 |
-
self.bert = bert_model
|
| 12 |
-
self.dropout = torch.nn.Dropout(0.1)
|
| 13 |
-
self.icd_classifier = torch.nn.Linear(768, len(ICD_CODES))
|
| 14 |
-
self.cpt_classifier = torch.nn.Linear(768, len(CPT_CODES))
|
| 15 |
-
|
| 16 |
-
def forward(self, input_ids, attention_mask):
|
| 17 |
-
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 18 |
-
pooled_output = outputs.last_hidden_state[:, 0, :]
|
| 19 |
-
pooled_output = self.dropout(pooled_output)
|
| 20 |
-
|
| 21 |
-
icd_logits = self.icd_classifier(pooled_output)
|
| 22 |
-
cpt_logits = self.cpt_classifier(pooled_output)
|
| 23 |
-
|
| 24 |
-
return icd_logits, cpt_logits
|
| 25 |
-
|
| 26 |
-
# Load ICD codes from files
|
| 27 |
-
def load_icd_codes_from_files():
|
| 28 |
-
icd_codes = {}
|
| 29 |
-
directory_path = "./codes/icd_txt_files/" # Path to ICD codes directory
|
| 30 |
-
|
| 31 |
if os.path.exists(directory_path):
|
| 32 |
for file_name in os.listdir(directory_path):
|
| 33 |
if file_name.endswith(".txt"):
|
| 34 |
file_path = os.path.join(directory_path, file_name)
|
| 35 |
with open(file_path, "r", encoding="utf-8") as file:
|
| 36 |
for line in file:
|
| 37 |
-
# Skip empty lines
|
| 38 |
-
if line.strip():
|
| 39 |
-
# Split the line into code and description
|
| 40 |
-
parts = line.strip().split(maxsplit=1)
|
| 41 |
-
if len(parts) == 2:
|
| 42 |
-
code = parts[0].strip()
|
| 43 |
-
description = parts[1].strip()
|
| 44 |
-
icd_codes[code] = description
|
| 45 |
-
else:
|
| 46 |
-
print(f"Invalid line format in file {file_name}: {line}")
|
| 47 |
-
else:
|
| 48 |
-
print(f"Directory {directory_path} does not exist!")
|
| 49 |
-
|
| 50 |
-
if not icd_codes:
|
| 51 |
-
raise ValueError("No ICD codes were loaded. Please check your files and directory structure.")
|
| 52 |
-
|
| 53 |
-
return icd_codes
|
| 54 |
-
|
| 55 |
-
ICD_CODES = load_icd_codes_from_files()
|
| 56 |
-
print(f"Loaded {len(ICD_CODES)} ICD codes.")
|
| 57 |
-
|
| 58 |
-
# Load CPT codes from files
|
| 59 |
-
def load_cpt_codes_from_files():
|
| 60 |
-
cpt_codes = {}
|
| 61 |
-
directory_path = "./codes/cpt_txt_files/" # Path to CPT codes directory
|
| 62 |
-
|
| 63 |
-
if os.path.exists(directory_path):
|
| 64 |
-
for file_name in os.listdir(directory_path):
|
| 65 |
-
if file_name.endswith(".txt"):
|
| 66 |
-
file_path = os.path.join(directory_path, file_name)
|
| 67 |
-
with open(file_path, "r", encoding="utf-8") as file:
|
| 68 |
-
for line in file:
|
| 69 |
-
# Split the line into code and description
|
| 70 |
parts = line.strip().split(maxsplit=1)
|
| 71 |
if len(parts) == 2:
|
| 72 |
code = parts[0].strip()
|
| 73 |
description = parts[1].strip()
|
| 74 |
-
|
| 75 |
else:
|
| 76 |
print(f"Directory {directory_path} does not exist!")
|
|
|
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
ICD_CODES
|
| 82 |
-
|
| 83 |
|
| 84 |
-
# Load
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 88 |
-
base_model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 89 |
-
model = MedicalCodePredictor(base_model)
|
| 90 |
-
return tokenizer, model
|
| 91 |
|
| 92 |
# Prediction function
|
| 93 |
def predict_codes(text):
|
|
@@ -95,43 +40,42 @@ def predict_codes(text):
|
|
| 95 |
return "Please enter a medical summary."
|
| 96 |
|
| 97 |
# Tokenize input
|
| 98 |
-
inputs = tokenizer(
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
| 103 |
|
| 104 |
# Get predictions
|
| 105 |
model.eval()
|
| 106 |
-
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Get probabilities
|
| 109 |
-
|
| 110 |
-
cpt_probs = F.softmax(cpt_logits, dim=1)
|
| 111 |
|
| 112 |
-
# Get top 3 predictions
|
| 113 |
-
top_icd = torch.topk(icd_probs, k=3)
|
| 114 |
-
top_cpt = torch.topk(cpt_probs, k=3)
|
| 115 |
-
|
| 116 |
-
# Get top k predictions (limit k to the number of available codes)
|
| 117 |
top_k = min(3, len(ICD_CODES))
|
| 118 |
-
top_icd = torch.topk(
|
| 119 |
-
|
| 120 |
|
| 121 |
# Format results
|
| 122 |
result = "Recommended ICD-10 Codes:\n"
|
| 123 |
for i, (prob, idx) in enumerate(zip(top_icd.values[0], top_icd.indices[0])):
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
|
| 126 |
result += "\nRecommended CPT Codes:\n"
|
| 127 |
-
for i, (prob, idx) in enumerate(zip(
|
| 128 |
-
|
|
|
|
|
|
|
| 129 |
|
| 130 |
return result
|
| 131 |
|
| 132 |
-
# Load models globally
|
| 133 |
-
tokenizer, model = load_models()
|
| 134 |
-
|
| 135 |
# Create Gradio interface
|
| 136 |
iface = gr.Interface(
|
| 137 |
fn=predict_codes,
|
|
@@ -142,7 +86,7 @@ iface = gr.Interface(
|
|
| 142 |
),
|
| 143 |
outputs=gr.Textbox(
|
| 144 |
label="Predicted Codes",
|
| 145 |
-
lines=
|
| 146 |
),
|
| 147 |
title="AutoRCM - Medical Code Predictor",
|
| 148 |
description="Enter a medical summary to get recommended ICD-10 and CPT codes.",
|
|
@@ -154,4 +98,4 @@ iface = gr.Interface(
|
|
| 154 |
)
|
| 155 |
|
| 156 |
# Launch the interface
|
| 157 |
-
iface.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import torch.nn.functional as F
|
| 5 |
import os
|
| 6 |
|
| 7 |
+
# Load ICD and CPT codes from files
|
| 8 |
+
def load_codes_from_files(directory_path, code_type):
|
| 9 |
+
codes = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
if os.path.exists(directory_path):
|
| 11 |
for file_name in os.listdir(directory_path):
|
| 12 |
if file_name.endswith(".txt"):
|
| 13 |
file_path = os.path.join(directory_path, file_name)
|
| 14 |
with open(file_path, "r", encoding="utf-8") as file:
|
| 15 |
for line in file:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
parts = line.strip().split(maxsplit=1)
|
| 17 |
if len(parts) == 2:
|
| 18 |
code = parts[0].strip()
|
| 19 |
description = parts[1].strip()
|
| 20 |
+
codes[code] = description
|
| 21 |
else:
|
| 22 |
print(f"Directory {directory_path} does not exist!")
|
| 23 |
+
return codes
|
| 24 |
|
| 25 |
+
# Load ICD and CPT codes
|
| 26 |
+
ICD_CODES = load_codes_from_files("./codes/icd_txt_files/", "ICD")
|
| 27 |
+
CPT_CODES = load_codes_from_files("./codes/cpt_txt_files/", "CPT")
|
| 28 |
|
| 29 |
+
# Check if codes were loaded
|
| 30 |
+
if not ICD_CODES or not CPT_CODES:
|
| 31 |
+
raise ValueError("No ICD or CPT codes were loaded. Please check your files and directory structure.")
|
| 32 |
|
| 33 |
+
# Load tokenizer and model
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 35 |
+
model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=len(ICD_CODES))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Prediction function
|
| 38 |
def predict_codes(text):
|
|
|
|
| 40 |
return "Please enter a medical summary."
|
| 41 |
|
| 42 |
# Tokenize input
|
| 43 |
+
inputs = tokenizer(
|
| 44 |
+
text,
|
| 45 |
+
return_tensors="pt",
|
| 46 |
+
max_length=512,
|
| 47 |
+
truncation=True,
|
| 48 |
+
padding=True
|
| 49 |
+
)
|
| 50 |
|
| 51 |
# Get predictions
|
| 52 |
model.eval()
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = model(**inputs)
|
| 55 |
+
logits = outputs.logits
|
| 56 |
|
| 57 |
# Get probabilities
|
| 58 |
+
probs = F.softmax(logits, dim=1)
|
|
|
|
| 59 |
|
| 60 |
+
# Get top 3 predictions for ICD and CPT
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
top_k = min(3, len(ICD_CODES))
|
| 62 |
+
top_icd = torch.topk(probs, k=top_k)
|
|
|
|
| 63 |
|
| 64 |
# Format results
|
| 65 |
result = "Recommended ICD-10 Codes:\n"
|
| 66 |
for i, (prob, idx) in enumerate(zip(top_icd.values[0], top_icd.indices[0])):
|
| 67 |
+
code = list(ICD_CODES.keys())[idx.item()]
|
| 68 |
+
description = ICD_CODES[code]
|
| 69 |
+
result += f"{i+1}. {code}: {description} (Confidence: {prob.item():.2f})\n"
|
| 70 |
|
| 71 |
result += "\nRecommended CPT Codes:\n"
|
| 72 |
+
for i, (prob, idx) in enumerate(zip(top_icd.values[0], top_icd.indices[0])):
|
| 73 |
+
code = list(CPT_CODES.keys())[idx.item()]
|
| 74 |
+
description = CPT_CODES[code]
|
| 75 |
+
result += f"{i+1}. {code}: {description} (Confidence: {prob.item():.2f})\n"
|
| 76 |
|
| 77 |
return result
|
| 78 |
|
|
|
|
|
|
|
|
|
|
| 79 |
# Create Gradio interface
|
| 80 |
iface = gr.Interface(
|
| 81 |
fn=predict_codes,
|
|
|
|
| 86 |
),
|
| 87 |
outputs=gr.Textbox(
|
| 88 |
label="Predicted Codes",
|
| 89 |
+
lines=10
|
| 90 |
),
|
| 91 |
title="AutoRCM - Medical Code Predictor",
|
| 92 |
description="Enter a medical summary to get recommended ICD-10 and CPT codes.",
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
# Launch the interface
|
| 101 |
+
iface.launch(share=True)
|