mohanjebaraj commited on
Commit
ac169b3
·
verified ·
1 Parent(s): 42052fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -6
app.py CHANGED
@@ -34,17 +34,27 @@ def load_icd_codes_from_files():
34
  file_path = os.path.join(directory_path, file_name)
35
  with open(file_path, "r", encoding="utf-8") as file:
36
  for line in file:
37
- # Split the line into code and description
38
- parts = line.strip().split(maxsplit=1)
39
- if len(parts) == 2:
40
- code = parts[0].strip()
41
- description = parts[1].strip()
42
- icd_codes[code] = description
 
 
 
 
43
  else:
44
  print(f"Directory {directory_path} does not exist!")
45
 
 
 
 
46
  return icd_codes
47
 
 
 
 
48
  # Load CPT codes from files
49
  def load_cpt_codes_from_files():
50
  cpt_codes = {}
@@ -102,6 +112,11 @@ def predict_codes(text):
102
  # Get top 3 predictions
103
  top_icd = torch.topk(icd_probs, k=3)
104
  top_cpt = torch.topk(cpt_probs, k=3)
 
 
 
 
 
105
 
106
  # Format results
107
  result = "Recommended ICD-10 Codes:\n"
 
34
  file_path = os.path.join(directory_path, file_name)
35
  with open(file_path, "r", encoding="utf-8") as file:
36
  for line in file:
37
+ # Skip empty lines
38
+ if line.strip():
39
+ # Split the line into code and description
40
+ parts = line.strip().split(maxsplit=1)
41
+ if len(parts) == 2:
42
+ code = parts[0].strip()
43
+ description = parts[1].strip()
44
+ icd_codes[code] = description
45
+ else:
46
+ print(f"Invalid line format in file {file_name}: {line}")
47
  else:
48
  print(f"Directory {directory_path} does not exist!")
49
 
50
+ if not icd_codes:
51
+ raise ValueError("No ICD codes were loaded. Please check your files and directory structure.")
52
+
53
  return icd_codes
54
 
55
+ ICD_CODES = load_icd_codes_from_files()
56
+ print(f"Loaded {len(ICD_CODES)} ICD codes.")
57
+
58
  # Load CPT codes from files
59
  def load_cpt_codes_from_files():
60
  cpt_codes = {}
 
112
  # Get top 3 predictions
113
  top_icd = torch.topk(icd_probs, k=3)
114
  top_cpt = torch.topk(cpt_probs, k=3)
115
+
116
+ # Get top k predictions (limit k to the number of available codes)
117
+ top_k = min(3, len(ICD_CODES))
118
+ top_icd = torch.topk(icd_probs, k=top_k)
119
+
120
 
121
  # Format results
122
  result = "Recommended ICD-10 Codes:\n"