|
import cv2 |
|
import mediapipe as mp |
|
from mediapipe.tasks import python |
|
from mediapipe.tasks.python import vision |
|
import gradio as gr |
|
import os |
|
|
|
def recognize_gesture(image): |
|
|
|
model_path = os.path.abspath("arabic_signlanguage_characters_model.task") |
|
recognizer = vision.GestureRecognizer.create_from_model_path(model_path) |
|
|
|
|
|
if isinstance(image, gr.Image): |
|
image = image.to_ndarray(format="bgr") |
|
|
|
|
|
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image) |
|
|
|
|
|
recognition_result = recognizer.recognize(image) |
|
|
|
|
|
top_gesture = recognition_result.gestures[0][0] |
|
|
|
|
|
return f"Gesture recognized: {top_gesture.category_name} ({top_gesture.score:.2f})" |
|
|
|
iface = gr.Interface( |
|
fn=recognize_gesture, |
|
inputs=["image"], |
|
outputs="text", |
|
title="Arabic Sign Language Character Recognition", |
|
description="Upload an image to recognize the gesture", |
|
) |
|
|
|
iface.launch(share=True) |