mohamedemam commited on
Commit
4ac3ef7
·
1 Parent(s): 998de28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -4
app.py CHANGED
@@ -3,9 +3,17 @@ from transformers import AutoTokenizer
3
  import re
4
  from peft import PeftModel, PeftConfig
5
  from transformers import AutoModelForCausalLM
 
 
 
 
 
 
 
 
6
 
7
  config = PeftConfig.from_pretrained("mohamedemam/Arabic-meeting-summarization")
8
- model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-3b")
9
  model = PeftModel.from_pretrained(model, "mohamedemam/Arabic-meeting-summarization")
10
  # Load the tokenizer and model
11
  model_name ="bigscience/bloomz-3b"
@@ -26,7 +34,7 @@ for i in range(len(example_contexts)):
26
  # Function to generate questions and answers with configurable parameters
27
  def generate_qa(context, temperature, top_p,num_seq,l_p, num_b):
28
  input_text = context
29
- input_ids = tokenizer(input_text, return_tensors='pt')
30
 
31
  # Generate with configurable parameters
32
  output = model.generate(
@@ -35,7 +43,7 @@ def generate_qa(context, temperature, top_p,num_seq,l_p, num_b):
35
  top_p=top_p,
36
  num_return_sequences=num_seq,
37
 
38
- max_length=100,
39
  num_beams=num_b,
40
  length_penalty=l_p,
41
  do_sample=True,
@@ -49,7 +57,6 @@ def generate_qa(context, temperature, top_p,num_seq,l_p, num_b):
49
  iface = gr.Interface(
50
  fn=generate_qa,
51
  inputs=[
52
- gr.inputs.Dropdown(example_contexts, label="Choose an Example"),
53
  gr.inputs.Slider(minimum=0.0, maximum=5, default=2.1, step=0.01, label="Temperature"),
54
  gr.inputs.Slider(minimum=0.0, maximum=1, default=0.5, step=0.01, label="Top-p"),
55
  gr.inputs.Slider(minimum=1, maximum=20, default=3, step=1, label="num of sequance"),
 
3
  import re
4
  from peft import PeftModel, PeftConfig
5
  from transformers import AutoModelForCausalLM
6
+ from transformers import BitsAndBytesConfig
7
+
8
+ nf4_config = BitsAndBytesConfig(
9
+ load_in_4bit=True,
10
+ bnb_4bit_quant_type="nf4",
11
+ bnb_4bit_use_double_quant=True,
12
+ bnb_4bit_compute_dtype=torch.bfloat16
13
+ )
14
 
15
  config = PeftConfig.from_pretrained("mohamedemam/Arabic-meeting-summarization")
16
+ model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-3b",quantization_config=nf4_config)
17
  model = PeftModel.from_pretrained(model, "mohamedemam/Arabic-meeting-summarization")
18
  # Load the tokenizer and model
19
  model_name ="bigscience/bloomz-3b"
 
34
  # Function to generate questions and answers with configurable parameters
35
  def generate_qa(context, temperature, top_p,num_seq,l_p, num_b):
36
  input_text = context
37
+ input_ids = tokenizer(text=input_text, return_tensors='pt')
38
 
39
  # Generate with configurable parameters
40
  output = model.generate(
 
43
  top_p=top_p,
44
  num_return_sequences=num_seq,
45
 
46
+ max_new_tokens=60,
47
  num_beams=num_b,
48
  length_penalty=l_p,
49
  do_sample=True,
 
57
  iface = gr.Interface(
58
  fn=generate_qa,
59
  inputs=[
 
60
  gr.inputs.Slider(minimum=0.0, maximum=5, default=2.1, step=0.01, label="Temperature"),
61
  gr.inputs.Slider(minimum=0.0, maximum=1, default=0.5, step=0.01, label="Top-p"),
62
  gr.inputs.Slider(minimum=1, maximum=20, default=3, step=1, label="num of sequance"),