Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pickle | |
import pandas as pd | |
from joblib import dump, load | |
# Load model from file | |
# with open('model_rfbest_pipe_rfbest_pipe_rfbest_pipe_rf.pkl', 'rb') as file: | |
# model = pickle.load(file) | |
model_path = 'model_rfbest_pipe_rfbest_pipe_rfbest_pipe_rf.pkl' | |
with open(model_path, 'rb') as file: | |
model = pickle.load(file) | |
# Load the model from file using joblib | |
# model_path = 'joblibmodel_rfbest_pipe_rfbest_pipe_rfbest_pipe_rf.pkl' | |
# model = joblib.load(model_path) | |
# Judul aplikasi | |
st.title("Prediksi Churn Pelanggan") | |
# Form untuk input data | |
st.subheader("Masukkan Data Pelanggan") | |
# Input data pelanggan | |
gender = st.selectbox('Gender', ['Female', 'Male']) | |
senior_citizen = st.selectbox('Senior Citizen', [0, 1]) | |
partner = st.selectbox('Partner', ['Yes', 'No']) | |
dependents = st.selectbox('Dependents', ['Yes', 'No']) | |
tenure = st.number_input('Tenure (bulan)', min_value=0, max_value=72, value=45) | |
phone_service = st.selectbox('Phone Service', ['Yes', 'No']) | |
multiple_lines = st.selectbox('Multiple Lines', ['Yes', 'No']) | |
internet_service = st.selectbox('Internet Service', ['DSL', 'Fiber optic', 'No']) | |
online_security = st.selectbox('Online Security', ['Yes', 'No']) | |
online_backup = st.selectbox('Online Backup', ['Yes', 'No']) | |
device_protection = st.selectbox('Device Protection', ['Yes', 'No']) | |
tech_support = st.selectbox('Tech Support', ['Yes', 'No']) | |
streaming_tv = st.selectbox('Streaming TV', ['Yes', 'No']) | |
streaming_movies = st.selectbox('Streaming Movies', ['Yes', 'No']) | |
contract = st.selectbox('Contract', ['Month-to-month', 'One year', 'Two year']) | |
paperless_billing = st.selectbox('Paperless Billing', ['Yes', 'No']) | |
payment_method = st.selectbox('Payment Method', ['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)']) | |
monthly_charges = st.number_input('Monthly Charges', min_value=0.0, value=70.35) | |
total_charges = st.number_input('Total Charges', min_value=0.0, value=346.45) | |
# Membuat DataFrame dari input | |
data_baru = { | |
'gender': [gender], | |
'SeniorCitizen': [senior_citizen], | |
'Partner': [partner], | |
'Dependents': [dependents], | |
'tenure': [tenure], | |
'PhoneService': [phone_service], | |
'MultipleLines': [multiple_lines], | |
'InternetService': [internet_service], | |
'OnlineSecurity': [online_security], | |
'OnlineBackup': [online_backup], | |
'DeviceProtection': [device_protection], | |
'TechSupport': [tech_support], | |
'StreamingTV': [streaming_tv], | |
'StreamingMovies': [streaming_movies], | |
'Contract': [contract], | |
'PaperlessBilling': [paperless_billing], | |
'PaymentMethod': [payment_method], | |
'MonthlyCharges': [monthly_charges], | |
'TotalCharges': [total_charges] | |
} | |
df_baru = pd.DataFrame(data_baru) | |
# Melakukan encoding pada data kategorikal | |
categorical_columns = df_baru.select_dtypes(include=['object']).columns | |
df_baru = pd.get_dummies(df_baru, columns=categorical_columns, drop_first=True) | |
# Menampilkan data yang dimasukkan pengguna | |
st.subheader("Data Pelanggan yang Dimasukkan:") | |
st.write(df_baru) | |
# Tombol untuk melakukan prediksi | |
if st.button('Prediction'): | |
# Prediksi churn | |
prediksi = model.predict(df_baru) | |
# Menampilkan hasil prediksi | |
if prediksi[0] == 1: | |
hasil = 'Yes' | |
else: | |
hasil = 'No' | |
st.subheader(f"Hasil Prediksi Churn: {hasil}") | |
# Probabilitas churn | |
probabilitas = model.predict_proba(df_baru)[:, 1] | |
st.subheader(f"Probabilitas Churn: {probabilitas[0]:.2f}") | |