Spaces:
Sleeping
Sleeping
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering | |
from sentence_transformers import SentenceTransformer | |
from transformers import Trainer | |
import torch | |
import torch.nn.functional as F | |
class ModelWrapper(): | |
def __init__(self, location = "./models/deepset/tinyroberta-squad"): | |
self.model_location = location | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_location) | |
self.model_qa = AutoModelForQuestionAnswering.from_pretrained(self.model_location) | |
self.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
def get_embeddings(self, text, isDocument): | |
if isDocument: | |
text = text.split(".") | |
embeddings = self.embedding_model.encode(text) | |
if isDocument: | |
embeddings = sum(embeddings).reshape(1,-1) | |
else: | |
embeddings = embeddings.reshape(1,-1) | |
return embeddings |