AutoMerger / app.py
mlabonne's picture
Update app.py
bbfe612 verified
raw
history blame
10.4 kB
import os
import time
import random
import yaml
import subprocess
import runpod
import gradio as gr
import pandas as pd
from jinja2 import Template
from huggingface_hub import ModelCard, ModelCardData, HfApi, repo_info
from huggingface_hub.utils import RepositoryNotFoundError
# Set environment variables
HF_TOKEN = os.environ.get("HF_TOKEN")
runpod.api_key = os.environ.get("RUNPOD_TOKEN")
# Parameters
USERNAME = 'automerger'
N_ROWS = 20
WAIT_TIME = 3600
def create_dataset() -> bool:
"""
Use Scrape Open LLM Leaderboard to create a CSV dataset.
"""
command = ["python3", "scrape-open-llm-leaderboard/main.py", "-csv"]
try:
result = subprocess.run(command, check=True, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, text=True)
print(f"scrape-open-llm-leaderboard: {result.stdout}")
return True
except subprocess.CalledProcessError as e:
print(f"scrape-open-llm-leaderboard: {e.stderr}")
return False
def merge_models() -> None:
"""
Use mergekit to create a merge.
"""
command = ["mergekit-yaml", "config.yaml", "merge", "--copy-tokenizer", "--allow-crimes", "--out-shard-size", "1B", "--lazy-unpickle"]
try:
result = subprocess.run(command, check=True, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, text=True)
print(f"mergekit: {result.stdout}")
except subprocess.CalledProcessError as e:
print(f"mergekit: {e.stderr}")
def make_df(file_path: str, n_rows: int) -> pd.DataFrame:
"""
Create a filtered dataset from the Open LLM Leaderboard.
"""
columns = ["Available on the hub", "Model sha", "T", "Type", "Precision",
"Architecture", "Weight type", "Hub ❤️", "Flagged", "MoE"]
ds = pd.read_csv(file_path)
df = (
ds[
(ds["#Params (B)"] == 7.24) &
(ds["Available on the hub"] == True) &
(ds["Flagged"] == False) &
(ds["MoE"] == False) &
(ds["Weight type"] == "Original")
]
.drop(columns=columns)
.drop_duplicates(subset=["Model"])
.iloc[:n_rows]
)
return df
def repo_exists(repo_id: str) -> bool:
try:
repo_info(repo_id)
return True
except RepositoryNotFoundError:
return False
def get_name(models: list[pd.Series], username: str, version=0) -> str:
model_name = models[0]["Model"].split("/")[-1].split("-")[0].capitalize() \
+ models[1]["Model"].split("/")[-1].split("-")[0].capitalize() \
+ "-7B"
if version > 0:
model_name = model_name.split("-")[0] + f"-v{version}-7B"
if repo_exists(f"{username}/{model_name}"):
get_name(models, username, version+1)
return model_name
def get_license(models: list[pd.Series]) -> str:
license1 = models[0]["Hub License"]
license2 = models[1]["Hub License"]
license = "cc-by-nc-4.0"
if license1 == "cc-by-nc-4.0" or license2 == "cc-by-nc-4.0":
license = "cc-by-nc-4.0"
elif license1 == "apache-2.0" or license2 == "apache-2.0":
license = "apache-2.0"
elif license1 == "MIT" and license2 == "MIT":
license = "MIT"
return license
def create_config(models: list[pd.Series]) -> str:
slerp_config = f"""
slices:
- sources:
- model: {models[0]["Model"]}
layer_range: [0, 32]
- model: {models[1]["Model"]}
layer_range: [0, 32]
merge_method: slerp
base_model: {models[0]["Model"]}
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
random_seed: 0
"""
dare_config = f"""
models:
- model: {models[0]["Model"]}
# No parameters necessary for base model
- model: {models[1]["Model"]}
parameters:
density: 0.53
weight: 0.6
merge_method: dare_ties
base_model: {models[0]["Model"]}
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
"""
yaml_config = random.choices([slerp_config, dare_config], weights=[0.4, 0.6], k=1)[0]
with open('config.yaml', 'w', encoding="utf-8") as f:
f.write(yaml_config)
return yaml_config
def create_model_card(yaml_config: str, model_name: str, username: str, license: str) -> None:
template_text = """
---
license: {{ license }}
base_model:
{%- for model in models %}
- {{ model }}
{%- endfor %}
tags:
- merge
- mergekit
- lazymergekit
---
# {{ model_name }}
{{ model_name }} is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration.
{%- for model in models %}
* [{{ model }}](https://huggingface.co/{{ model }})
{%- endfor %}
## 🧩 Configuration
```yaml
{{- yaml_config -}}
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "{{ username }}/{{ model_name }}"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
"""
# Create a Jinja template object
jinja_template = Template(template_text.strip())
# Get list of models from config
data = yaml.safe_load(yaml_config)
if "models" in data:
models = [data["models"][i]["model"] for i in range(len(data["models"])) if "parameters" in data["models"][i]]
elif "parameters" in data:
models = [data["slices"][0]["sources"][i]["model"] for i in range(len(data["slices"][0]["sources"]))]
elif "slices" in data:
models = [data["slices"][i]["sources"][0]["model"] for i in range(len(data["slices"]))]
else:
raise Exception("No models or slices found in yaml config")
# Fill the template
content = jinja_template.render(
model_name=model_name,
models=models,
yaml_config=yaml_config,
username=username,
license=license
)
# Save the model card
card = ModelCard(content)
card.save('merge/README.md')
def upload_model(api: HfApi, username: str, model_name: str) -> None:
api.create_repo(
repo_id=f"{username}/{model_name}",
repo_type="model",
exist_ok=True,
)
api.upload_folder(
repo_id=f"{username}/{model_name}",
folder_path="merge",
)
def create_pod(model_name: str, username: str, n=10, wait_seconds=10):
for attempt in range(n):
try:
pod = runpod.create_pod(
name=f"Automerge {model_name} on Nous",
image_name="runpod/pytorch:2.0.1-py3.10-cuda11.8.0-devel-ubuntu22.04",
gpu_type_id="NVIDIA GeForce RTX 3090",
cloud_type="COMMUNITY",
gpu_count=1,
volume_in_gb=0,
container_disk_in_gb=50,
template_id="au6nz6emhk",
env={
"BENCHMARK": "nous",
"MODEL_ID": f"{username}/{model_name}",
"REPO": "https://github.com/mlabonne/llm-autoeval.git",
"TRUST_REMOTE_CODE": False,
"DEBUG": False,
"GITHUB_API_TOKEN": os.environ["GITHUB_TOKEN"],
}
)
print("Pod creation succeeded.")
return pod
except Exception as e:
print(f"Attempt {attempt + 1} failed with error: {e}")
if attempt < n - 1:
print(f"Waiting {wait_seconds} seconds before retrying...")
time.sleep(wait_seconds)
else:
print("All attempts failed. Giving up.")
raise
def merge_loop():
# Start HF API
api = HfApi(token=HF_TOKEN)
# Create dataset (proceed only if successful)
if not create_dataset():
print("Failed to create dataset. Skipping merge loop.")
return
df = make_df("open-llm-leaderboard.csv", N_ROWS)
# Sample two models
sample = df.sample(n=2)
models = [sample.iloc[i] for i in range(2)]
# Get model name
model_name = get_name(models, USERNAME, version=0)
print(model_name)
# Get model license
license = get_license(models)
print(license)
# Merge configs
yaml_config = create_config(models)
print(yaml_config)
# Merge models
merge_models()
# Create model card
create_model_card(yaml_config, model_name, USERNAME, license)
# Upload model
upload_model(api, USERNAME, model_name)
# Evaluate model on Runpod
create_pod(model_name, USERNAME)
command = ["git", "clone", "-q", "https://github.com/Weyaxi/scrape-open-llm-leaderboard"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["pip", "install", "-r", "scrape-open-llm-leaderboard/requirements.txt"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["git", "clone", "https://github.com/arcee-ai/mergekit.git"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["pip", "install", "-e", "mergekit"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# Gradio interface
title = """
<div align="center">
<p style="font-size: 36px;">♾️ AutoMerger</p>
<p style="font-size: 20px;">📝 <a href="https://medium.com/towards-data-science/merge-large-language-models-with-mergekit-2118fb392b54">Model merging</a> • 💻 <a href="https://github.com/arcee-ai/mergekit">Mergekit</a> • 🐦 <a href="https://twitter.com/maximelabonne">Follow me on X</a></p>
<p><em>AutoMerger selects two 7B models on top of the Open LLM Leaderboard, combine them with a merge technique, and evaluate the resulting model.</em></p>
</div>
"""
with gr.Blocks() as demo:
gr.Markdown(title)
demo.launch().launch(server_name="0.0.0.0")
print("Start AutoMerger...")
# Main loop
while True:
merge_loop()
time.sleep(WAIT_TIME)