Spaces:
Running
on
A10G
Running
on
A10G
BertChristiaens
commited on
Commit
•
a54498b
1
Parent(s):
13e5061
cache
Browse files- app.py +1 -10
- models.py +3 -6
- models_stub.py +0 -25
app.py
CHANGED
@@ -7,15 +7,7 @@ import numpy as np
|
|
7 |
import os
|
8 |
import time
|
9 |
|
10 |
-
|
11 |
-
EMULATED = os.environ.get('EMULATED', False)
|
12 |
-
print(EMULATED)
|
13 |
-
|
14 |
-
if not EMULATED:
|
15 |
-
from models import make_image_controlnet, make_inpainting, segment_image
|
16 |
-
else:
|
17 |
-
from models_stub import make_image_controlnet, make_inpainting, segment_image
|
18 |
-
|
19 |
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
|
20 |
from palette import COLOR_MAPPING_CATEGORY
|
21 |
from preprocessing import preprocess_seg_mask, get_image, get_mask
|
@@ -35,7 +27,6 @@ def on_upload() -> None:
|
|
35 |
del st.session_state['unique_colors']
|
36 |
|
37 |
|
38 |
-
|
39 |
def check_reset_state() -> bool:
|
40 |
"""Check whether the UI elements need to be reset
|
41 |
Returns:
|
|
|
7 |
import os
|
8 |
import time
|
9 |
|
10 |
+
from models import make_image_controlnet, make_inpainting, segment_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
|
12 |
from palette import COLOR_MAPPING_CATEGORY
|
13 |
from preprocessing import preprocess_seg_mask, get_image, get_mask
|
|
|
27 |
del st.session_state['unique_colors']
|
28 |
|
29 |
|
|
|
30 |
def check_reset_state() -> bool:
|
31 |
"""Check whether the UI elements need to be reset
|
32 |
Returns:
|
models.py
CHANGED
@@ -75,8 +75,7 @@ def postprocess_image_masking(inpainted: Image, image: Image, mask: Image) -> Im
|
|
75 |
return final_inpainted.convert("RGB")
|
76 |
|
77 |
|
78 |
-
@st.experimental_singleton(max_entries=
|
79 |
-
@st.cache_resource
|
80 |
def get_controlnet() -> ControlNetModel:
|
81 |
"""Method to load the controlnet model
|
82 |
Returns:
|
@@ -100,8 +99,7 @@ def get_controlnet() -> ControlNetModel:
|
|
100 |
return pipe, compel_proc
|
101 |
|
102 |
|
103 |
-
@st.experimental_singleton(max_entries=
|
104 |
-
@st.cache_resource
|
105 |
def get_segmentation_pipeline() -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
|
106 |
"""Method to load the segmentation pipeline
|
107 |
Returns:
|
@@ -113,8 +111,7 @@ def get_segmentation_pipeline() -> Tuple[AutoImageProcessor, UperNetForSemanticS
|
|
113 |
return image_processor, image_segmentor
|
114 |
|
115 |
|
116 |
-
@st.experimental_singleton(max_entries=
|
117 |
-
@st.cache_resource
|
118 |
def get_inpainting_pipeline() -> StableDiffusionInpaintPipeline:
|
119 |
"""Method to load the inpainting pipeline
|
120 |
Returns:
|
|
|
75 |
return final_inpainted.convert("RGB")
|
76 |
|
77 |
|
78 |
+
@st.experimental_singleton(max_entries=5)
|
|
|
79 |
def get_controlnet() -> ControlNetModel:
|
80 |
"""Method to load the controlnet model
|
81 |
Returns:
|
|
|
99 |
return pipe, compel_proc
|
100 |
|
101 |
|
102 |
+
@st.experimental_singleton(max_entries=5)
|
|
|
103 |
def get_segmentation_pipeline() -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
|
104 |
"""Method to load the segmentation pipeline
|
105 |
Returns:
|
|
|
111 |
return image_processor, image_segmentor
|
112 |
|
113 |
|
114 |
+
@st.experimental_singleton(max_entries=5)
|
|
|
115 |
def get_inpainting_pipeline() -> StableDiffusionInpaintPipeline:
|
116 |
"""Method to load the inpainting pipeline
|
117 |
Returns:
|
models_stub.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
def make_image_controlnet(image,
|
4 |
-
mask_image,
|
5 |
-
controlnet_conditioning_image,
|
6 |
-
positive_prompt,
|
7 |
-
negative_prompt,
|
8 |
-
seed,
|
9 |
-
):
|
10 |
-
print("EMULATED CONTROLNET")
|
11 |
-
return [image]
|
12 |
-
|
13 |
-
def make_inpainting(positive_prompt,
|
14 |
-
image,
|
15 |
-
mask_image,
|
16 |
-
negative_prompt,
|
17 |
-
):
|
18 |
-
print("EMULATED INPAINTING")
|
19 |
-
return [image]
|
20 |
-
|
21 |
-
def segment_image(image):
|
22 |
-
# numpy array of shape (width, height, 3) with ones
|
23 |
-
print("EMULATED SEGMENTATION")
|
24 |
-
return np.ones((image.width, image.height, 3))
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|