Spaces:
Running
Running
Merge pull request #5 from ml-energy/add_compute_script
Browse files- extract.py +69 -0
extract.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import statistics
|
5 |
+
import os
|
6 |
+
import csv
|
7 |
+
|
8 |
+
model = []
|
9 |
+
throughput = []
|
10 |
+
response_length = []
|
11 |
+
latency = []
|
12 |
+
energy = []
|
13 |
+
|
14 |
+
temp_throughput = []
|
15 |
+
temp_response_length = []
|
16 |
+
temp_latency = []
|
17 |
+
temp_energy = []
|
18 |
+
|
19 |
+
model_name = os.listdir("data/chat")
|
20 |
+
|
21 |
+
match_name = False
|
22 |
+
|
23 |
+
for models in model_name:
|
24 |
+
with open("data/chat/"+models+"/benchmark.json", 'r') as file:
|
25 |
+
json_data = json.load(file)
|
26 |
+
|
27 |
+
for obj in json_data:
|
28 |
+
if not match_name:
|
29 |
+
name = str(obj["model"])
|
30 |
+
model.append(name.replace('--','/'))
|
31 |
+
match_name = True
|
32 |
+
temp_throughput.append(float(obj["throughput"]))
|
33 |
+
temp_response_length.append(float(obj["response_length"]))
|
34 |
+
temp_latency.append(float(obj["latency"]))
|
35 |
+
temp_energy.append(float(obj["energy"]))
|
36 |
+
|
37 |
+
match_name = False
|
38 |
+
|
39 |
+
throughput.append(temp_throughput.copy())
|
40 |
+
response_length.append(temp_response_length.copy())
|
41 |
+
latency.append(temp_latency.copy())
|
42 |
+
energy.append(temp_energy.copy())
|
43 |
+
|
44 |
+
temp_throughput.clear()
|
45 |
+
temp_response_length.clear()
|
46 |
+
temp_latency.clear()
|
47 |
+
temp_energy.clear()
|
48 |
+
|
49 |
+
|
50 |
+
avg_throughput = [statistics.mean(row) for row in throughput]
|
51 |
+
avg_response_length = [statistics.mean(row) for row in response_length]
|
52 |
+
avg_latency = [statistics.mean(row) for row in latency]
|
53 |
+
avg_energy = [statistics.mean(row) for row in energy]
|
54 |
+
|
55 |
+
for i in range(len(model)):
|
56 |
+
print(model[i])
|
57 |
+
print(len(throughput[i]))
|
58 |
+
print(len(response_length[i]))
|
59 |
+
print(len(latency[i]))
|
60 |
+
print(len(energy[i]))
|
61 |
+
|
62 |
+
csv_file = "leaderboard.csv"
|
63 |
+
|
64 |
+
with open(csv_file, "w", newline="") as file:
|
65 |
+
writer = csv.writer(file)
|
66 |
+
writer.writerow(["model","throughput","response_length","latency","energy"])
|
67 |
+
for i in range(len(model)):
|
68 |
+
writer.writerow([model[i], avg_throughput[i], avg_response_length[i], avg_latency[i], avg_energy[i]])
|
69 |
+
|