Spaces:
Running
Running
File size: 11,222 Bytes
c5e73ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
"""Taken and modified from vllm: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/benchmarks/benchmark_serving.py
"""
import argparse
import asyncio
import json
import random
import time
import torch
from typing import AsyncGenerator, List, Tuple
import aiohttp
import numpy as np
from dataclasses import asdict, dataclass, field
from tqdm.asyncio import tqdm
from zeus.monitor import ZeusMonitor
SYSTEM_PROMPT = "A chat between a human user (prompter) and an artificial intelligence (AI) assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. "
@dataclass
class Results:
model: str
backend: str
request_rate: float
num_failures: int = 0
system_prompt: str = SYSTEM_PROMPT
total_time: float = 0.0
throughput: float = 0.0
total_prompt_tokens: int = 0.0
total_completion_tokens: int = 0.0
avg_latency: float = 0.0
avg_latency_per_token: float = 0.0
avg_latency_per_output_token: float = 0.0
server_total_energy: float = 0.0
server_energy_per_request: float = 0.0
server_energy_per_output_token: float = 0.0
local_zeus_total_energy: float = 0.0
local_zeus_energy_per_request: float = 0.0
local_zeus_energy_per_output_token: float = 0.0
results: list["Result"] = field(default_factory=list)
@dataclass
class Result:
success: bool = True
latency: float = 0.0
prompt: str = ""
response: str = ""
num_prompt_tokens: int = 0
num_completion_tokens: int = 0
energy: float = 0.0
def get_requests(
dataset_path: str,
) -> List[str]:
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Only keep the first turn of each conversation.
dataset = [data["conversations"][0]["value"] for data in dataset]
return dataset
async def get_request(
input_requests: List[str],
request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
input_requests = iter(input_requests)
for i, request in enumerate(input_requests):
yield i, request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
async def send_request(
result: Result,
backend: str,
model: str,
api_url: str,
prompt: str,
pbar: tqdm,
) -> None:
request_start_time = time.perf_counter()
headers = {"Content-Type": "application/json"}
# OpenAI Chat Completions API request format
pload = {
"model": model,
"messages": [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt},
],
"stream": False,
"max_tokens": 1000,
}
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
async with session.post(api_url, headers=headers, json=pload) as response:
# Request failed
if response.status // 100 != 2:
print('request failed')
print(f"response.status {response.status}")
result.prompt = prompt
result.success = False
return
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
request_end_time = time.perf_counter()
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
result.latency = request_end_time - request_start_time
result.prompt = prompt
result.response = output["choices"][0]["message"]["content"]
result.num_prompt_tokens = output["usage"]["prompt_tokens"]
result.num_completion_tokens = output["usage"]["completion_tokens"]
result.energy = output["usage"]["energy"]
pbar.update(1)
async def benchmark(
results: Results,
backend: str,
model: str,
api_url: str,
input_requests: List[str],
request_rate: float,
) -> None:
tasks: List[asyncio.Task] = []
pbar = tqdm(total=len(input_requests))
async for i, request in get_request(input_requests, request_rate):
prompt = request
task = asyncio.create_task(
# Ensures results has same ordering as the input dataset
send_request(
results.results[i],
backend,
model,
api_url,
prompt,
pbar,
)
)
tasks.append(task)
await asyncio.gather(*tasks)
pbar.close()
def run_benchmark(
args: argparse.Namespace, api_url: str, input_requests: List[str], out_filename: str
):
results = Results(
model=args.model,
backend=args.backend,
request_rate=args.request_rate,
results=[Result() for _ in input_requests],
)
zeus_monitor = ZeusMonitor()
zeus_monitor.begin_window(out_filename)
benchmark_start_time = time.perf_counter()
asyncio.run(
benchmark(
results,
args.backend,
args.model,
api_url,
input_requests,
args.request_rate,
)
)
benchmark_end_time = time.perf_counter()
measurements = zeus_monitor.end_window(out_filename)
zeus_total_energy = measurements.total_energy
# Store aggregated results
total_prompt_tokens = 0
total_completion_tokens = 0
total_latency = 0
total_latency_per_token = 0
total_latency_per_output_token = 0
server_total_energy = 0
for result in results.results:
if not result.success:
results.num_failures += 1
continue
total_prompt_tokens += result.num_prompt_tokens
total_completion_tokens += result.num_completion_tokens
total_latency += result.latency
total_latency_per_token += result.latency / (
result.num_prompt_tokens + result.num_completion_tokens
)
total_latency_per_output_token += result.latency / result.num_completion_tokens
server_total_energy += result.energy
num_results = len(results.results) - results.num_failures
if num_results == 0:
print(f"{out_filename} not generated. All requests in this run failed.")
return
results.total_time = benchmark_end_time - benchmark_start_time
results.throughput = num_results / results.total_time
results.total_prompt_tokens = total_prompt_tokens
results.total_completion_tokens = total_completion_tokens
results.avg_latency = total_latency / num_results
results.avg_latency_per_token = total_latency_per_token / num_results
results.avg_latency_per_output_token = total_latency_per_output_token / num_results
results.server_total_energy = server_total_energy
results.server_energy_per_request = results.server_total_energy / num_results
results.server_energy_per_output_token = (
results.server_total_energy / results.total_completion_tokens
)
results.local_zeus_total_energy = zeus_total_energy
results.local_zeus_energy_per_request = zeus_total_energy / num_results
results.local_zeus_energy_per_output_token = (
zeus_total_energy / results.total_completion_tokens
)
with open(out_filename, "w") as f:
f.write(json.dumps(asdict(results), indent=2))
if args.verbose:
print("Benchmark results:")
print(f"Model: {results.model}")
print(f"Backend: {results.backend}")
print(f"Request rate: {results.request_rate} requests/s")
print()
print(f"Total time: {results.total_time:.2f} s")
print(f"Throughput: {results.throughput:.2f} requests/s")
print(f"Average latency: {results.avg_latency:.2f} s")
print(f"Average latency per token: {results.avg_latency_per_token:.2f} s")
print(f"Average latency per output token: {results.avg_latency_per_output_token:.2f} s")
print(f"(Zeus) Total energy: {results.local_zeus_total_energy:.2f} J")
print(f"(Zeus) Energy per request: {results.local_zeus_energy_per_request:.2f} J")
print(f"(Zeus) Energy per token: {results.local_zeus_energy_per_output_token:.2f} J")
print(f"(Server) Total energy: {results.server_total_energy:.2f} J")
print(f"(Server) Energy per request: {results.server_energy_per_request:.2f} J")
print(f"(Server) Energy per token: {results.server_energy_per_output_token:.2f} J")
print("Benchmark results written to", out_filename)
def main(args: argparse.Namespace):
if args.backend not in ["tgi", "vllm"]:
raise ValueError(f"Unknown backend: {args.backend}")
arg_out_filename = f"{args.out_name}-args.json"
with open(arg_out_filename, "w") as f:
f.write(json.dumps(vars(args), indent=2))
if args.verbose:
print(args)
print("Benchmark args written to", arg_out_filename)
random.seed(args.seed)
np.random.seed(args.seed)
out_name = args.out_name
api_url = f"{args.protocol}://{args.host}:{args.port}{args.endpoint}"
input_requests = get_requests(args.dataset)
# Note: output filenames are 1-indexed
for i in range(1, args.num_runs + 1):
run_benchmark(args, api_url, input_requests, out_name + f"-run{i}.json")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput."
)
parser.add_argument("--backend", type=str, default="vllm", choices=["vllm", "tgi"])
parser.add_argument(
"--protocol", type=str, default="http", choices=["http", "https"]
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--endpoint", type=str, default="/v1/chat/completions")
parser.add_argument("--model", type=str, default=None)
parser.add_argument(
"--dataset", type=str, required=True, help="Path to the dataset."
)
parser.add_argument(
"--num-runs",
type=int,
default=3,
help="Runs the benchmark num-runs times, writing results to 3 separate files.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
)
parser.add_argument(
"--out-name",
type=str,
default="benchmark_result",
help="Name of file to write benchmark results. Note: '-run{i}.json' will be appended for actual outputted files.",
)
parser.add_argument(
"--verbose",
type=bool,
default=True,
help="Set to true to print out benchmark results. Otherwise, only write to file.",
)
parser.add_argument("--seed", type=int, default=0)
args = parser.parse_args()
main(args)
|