Clémentine
commited on
Commit
·
8618a2a
1
Parent(s):
4fc3864
added collections back to main
Browse files- app.py +3 -1
- src/tools/collections.py +76 -0
app.py
CHANGED
@@ -3,7 +3,7 @@ import logging
|
|
3 |
import time
|
4 |
import gradio as gr
|
5 |
import datasets
|
6 |
-
from
|
7 |
from huggingface_hub import snapshot_download
|
8 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
9 |
from gradio_space_ci import enable_space_ci
|
@@ -105,6 +105,8 @@ def init_space(full_init: bool = True):
|
|
105 |
cols=COLS,
|
106 |
benchmark_cols=BENCHMARK_COLS,
|
107 |
)
|
|
|
|
|
108 |
|
109 |
# Evaluation queue DataFrame retrieval is independent of initialization detail level
|
110 |
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
|
|
3 |
import time
|
4 |
import gradio as gr
|
5 |
import datasets
|
6 |
+
from src.tools.collections import update_collections
|
7 |
from huggingface_hub import snapshot_download
|
8 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
9 |
from gradio_space_ci import enable_space_ci
|
|
|
105 |
cols=COLS,
|
106 |
benchmark_cols=BENCHMARK_COLS,
|
107 |
)
|
108 |
+
if full_init:
|
109 |
+
update_collections(leaderboard_df)
|
110 |
|
111 |
# Evaluation queue DataFrame retrieval is independent of initialization detail level
|
112 |
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
src/tools/collections.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
|
3 |
+
from huggingface_hub.utils._errors import HfHubHTTPError
|
4 |
+
from pandas import DataFrame
|
5 |
+
|
6 |
+
from src.display.utils import AutoEvalColumn, ModelType
|
7 |
+
from src.envs import HF_TOKEN, PATH_TO_COLLECTION
|
8 |
+
|
9 |
+
# Specific intervals for the collections
|
10 |
+
intervals = {
|
11 |
+
"1B": pd.Interval(0, 1.5, closed="right"),
|
12 |
+
"3B": pd.Interval(2.5, 3.5, closed="neither"),
|
13 |
+
"7B": pd.Interval(6, 8, closed="neither"),
|
14 |
+
"13B": pd.Interval(10, 14, closed="neither"),
|
15 |
+
"30B": pd.Interval(25, 35, closed="neither"),
|
16 |
+
"65B": pd.Interval(60, 70, closed="neither"),
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
def _filter_by_type_and_size(df, model_type, size_interval):
|
21 |
+
"""Filter DataFrame by model type and parameter size interval."""
|
22 |
+
type_emoji = model_type.value.symbol[0]
|
23 |
+
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji]
|
24 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
25 |
+
mask = params_column.apply(lambda x: x in size_interval)
|
26 |
+
return filtered_df.loc[mask]
|
27 |
+
|
28 |
+
|
29 |
+
def _add_models_to_collection(collection, models, model_type, size):
|
30 |
+
"""Add best models to the collection and update positions."""
|
31 |
+
cur_len_collection = len(collection.items)
|
32 |
+
for ix, model in enumerate(models, start=1):
|
33 |
+
try:
|
34 |
+
collection = add_collection_item(
|
35 |
+
PATH_TO_COLLECTION,
|
36 |
+
item_id=model,
|
37 |
+
item_type="model",
|
38 |
+
exists_ok=True,
|
39 |
+
note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!",
|
40 |
+
token=HF_TOKEN,
|
41 |
+
)
|
42 |
+
# Ensure position is correct if item was added
|
43 |
+
if len(collection.items) > cur_len_collection:
|
44 |
+
item_object_id = collection.items[-1].item_object_id
|
45 |
+
update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix)
|
46 |
+
cur_len_collection = len(collection.items)
|
47 |
+
break # assuming we only add the top model
|
48 |
+
except HfHubHTTPError:
|
49 |
+
continue
|
50 |
+
|
51 |
+
|
52 |
+
def update_collections(df: DataFrame):
|
53 |
+
"""Update collections by filtering and adding the best models."""
|
54 |
+
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=HF_TOKEN)
|
55 |
+
cur_best_models = []
|
56 |
+
|
57 |
+
for model_type in ModelType:
|
58 |
+
if not model_type.value.name:
|
59 |
+
continue
|
60 |
+
for size, interval in intervals.items():
|
61 |
+
filtered_df = _filter_by_type_and_size(df, model_type, interval)
|
62 |
+
best_models = list(
|
63 |
+
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.fullname.name][:10]
|
64 |
+
)
|
65 |
+
print(model_type.value.symbol, size, best_models)
|
66 |
+
_add_models_to_collection(collection, best_models, model_type, size)
|
67 |
+
cur_best_models.extend(best_models)
|
68 |
+
|
69 |
+
# Cleanup
|
70 |
+
existing_models = {item.item_id for item in collection.items}
|
71 |
+
to_remove = existing_models - set(cur_best_models)
|
72 |
+
for item_id in to_remove:
|
73 |
+
try:
|
74 |
+
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=HF_TOKEN)
|
75 |
+
except HfHubHTTPError:
|
76 |
+
continue
|