|
from dataclasses import dataclass, make_dataclass |
|
from enum import Enum |
|
import json |
|
import logging |
|
from datetime import datetime |
|
import pandas as pd |
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
|
|
|
|
def parse_iso8601_datetime(date_str): |
|
if date_str.endswith('Z'): |
|
date_str = date_str[:-1] + '+00:00' |
|
return datetime.fromisoformat(date_str) |
|
|
|
def parse_datetime(datetime_str): |
|
formats = [ |
|
"%Y-%m-%dT%H-%M-%S.%f", |
|
"%Y-%m-%dT%H:%M:%S.%f", |
|
"%Y-%m-%dT%H %M %S.%f", |
|
] |
|
|
|
for fmt in formats: |
|
try: |
|
return datetime.strptime(datetime_str, fmt) |
|
except ValueError: |
|
continue |
|
|
|
logging.error(f"No valid date format found for: {datetime_str}") |
|
return datetime(1970, 1, 1) |
|
|
|
|
|
def load_json_data(file_path): |
|
"""Safely load JSON data from a file.""" |
|
try: |
|
with open(file_path, "r") as file: |
|
return json.load(file) |
|
except json.JSONDecodeError: |
|
print(f"Error reading JSON from {file_path}") |
|
return None |
|
|
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
@dataclass |
|
class Task: |
|
benchmark: str |
|
metric: str |
|
col_name: str |
|
|
|
|
|
class Tasks(Enum): |
|
ifeval = Task("leaderboard_ifeval", "strict_acc,none", "IFEval") |
|
ifeval_raw = Task("leaderboard_ifeval", "strict_acc,none", "IFEval Raw") |
|
|
|
bbh = Task("leaderboard_bbh", "acc_norm,none", "BBH") |
|
bbh_raw = Task("leaderboard_bbh", "acc_norm,none", "BBH Raw") |
|
|
|
math = Task("leaderboard_math_hard", "exact_match,none", "MATH Lvl 5") |
|
math_raw = Task("leaderboard_math_hard", "exact_match,none", "MATH Lvl 5 Raw") |
|
|
|
gpqa = Task("leaderboard_gpqa", "acc_norm,none", "GPQA") |
|
gpqa_raw = Task("leaderboard_gpqa", "acc_norm,none", "GPQA Raw") |
|
|
|
musr = Task("leaderboard_musr", "acc_norm,none", "MUSR") |
|
musr_raw = Task("leaderboard_musr", "acc_norm,none", "MUSR Raw") |
|
|
|
mmlu_pro = Task("leaderboard_mmlu_pro", "acc,none", "MMLU-PRO") |
|
mmlu_pro_raw = Task("leaderboard_mmlu_pro", "acc,none", "MMLU-PRO Raw") |
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
dummy: bool = False |
|
|
|
|
|
auto_eval_column_dict = [] |
|
|
|
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) |
|
|
|
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)]) |
|
for task in Tasks: |
|
displayed_by_default = not task.name.endswith("_raw") |
|
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", displayed_by_default=displayed_by_default)]) |
|
|
|
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) |
|
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) |
|
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) |
|
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) |
|
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Not_Merged", "bool", False)]) |
|
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) |
|
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) |
|
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)]) |
|
auto_eval_column_dict.append( |
|
["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)] |
|
) |
|
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) |
|
auto_eval_column_dict.append(["not_flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)]) |
|
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)]) |
|
|
|
auto_eval_column_dict.append(["submission_date", ColumnContent, ColumnContent("submission_date", "date", False, hidden=True)]) |
|
auto_eval_column_dict.append(["upload_to_hub", ColumnContent, ColumnContent("upload_to_hub", "date", False, hidden=True)]) |
|
|
|
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Chat Template", "bool", False)]) |
|
auto_eval_column_dict.append(["maintainers_highlight", ColumnContent, ColumnContent("Maintainer's Highlight", "bool", False, hidden=True)]) |
|
|
|
|
|
auto_eval_column_dict.append(["fullname", ColumnContent, ColumnContent("fullname", "str", False, dummy=True)]) |
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model_link = ColumnContent("model_link", "markdown", True) |
|
model_name = ColumnContent("model_name", "str", True) |
|
revision = ColumnContent("revision", "str", True) |
|
|
|
precision = ColumnContent("precision", "str", True) |
|
|
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
symbol: str = "" |
|
|
|
|
|
class ModelType(Enum): |
|
PT = ModelDetails(name="π’ pretrained", symbol="π’") |
|
CPT = ModelDetails(name="π© continuously pretrained", symbol="π©") |
|
FT = ModelDetails(name="πΆ fine-tuned on domain-specific datasets", symbol="πΆ") |
|
chat = ModelDetails(name="π¬ chat models (RLHF, DPO, IFT, ...)", symbol="π¬") |
|
merges = ModelDetails(name="π€ base merges and moerges", symbol="π€") |
|
Unknown = ModelDetails(name="β other", symbol="β") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(m_type): |
|
if any([k for k in m_type if k in ["fine-tuned","πΆ", "finetuned"]]): |
|
return ModelType.FT |
|
if "continuously pretrained" in m_type or "π©" in m_type: |
|
return ModelType.CPT |
|
if "pretrained" in m_type or "π’" in m_type: |
|
return ModelType.PT |
|
if any([k in m_type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π¬"]]): |
|
return ModelType.chat |
|
if "merge" in m_type or "π€" in m_type: |
|
return ModelType.merges |
|
return ModelType.Unknown |
|
|
|
|
|
class WeightType(Enum): |
|
Adapter = ModelDetails("Adapter") |
|
Original = ModelDetails("Original") |
|
Delta = ModelDetails("Delta") |
|
|
|
|
|
class Precision(Enum): |
|
float16 = ModelDetails("float16") |
|
bfloat16 = ModelDetails("bfloat16") |
|
qt_8bit = ModelDetails("8bit") |
|
qt_4bit = ModelDetails("4bit") |
|
qt_GPTQ = ModelDetails("GPTQ") |
|
Unknown = ModelDetails("?") |
|
|
|
@staticmethod |
|
def from_str(precision): |
|
if precision in ["torch.float16", "float16"]: |
|
return Precision.float16 |
|
if precision in ["torch.bfloat16", "bfloat16"]: |
|
return Precision.bfloat16 |
|
if precision in ["8bit"]: |
|
return Precision.qt_8bit |
|
if precision in ["4bit"]: |
|
return Precision.qt_4bit |
|
if precision in ["GPTQ", "None"]: |
|
return Precision.qt_GPTQ |
|
return Precision.Unknown |
|
|
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn)] |
|
TYPES = [c.type for c in fields(AutoEvalColumn)] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |
|
|
|
NUMERIC_INTERVALS = { |
|
"?": pd.Interval(-1, 0, closed="right"), |
|
"~1.5": pd.Interval(0, 2, closed="right"), |
|
"~3": pd.Interval(2, 4, closed="right"), |
|
"~7": pd.Interval(4, 9, closed="right"), |
|
"~13": pd.Interval(9, 20, closed="right"), |
|
"~35": pd.Interval(20, 45, closed="right"), |
|
"~60": pd.Interval(45, 70, closed="right"), |
|
"70+": pd.Interval(70, 10000, closed="right"), |
|
} |
|
|