Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import io
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import pypdfium2
|
7 |
+
import streamlit as st
|
8 |
+
from surya.detection import batch_text_detection
|
9 |
+
from surya.layout import batch_layout_detection
|
10 |
+
from surya.model.detection.segformer import load_model, load_processor
|
11 |
+
from surya.model.recognition.model import load_model as load_rec_model
|
12 |
+
from surya.model.recognition.processor import load_processor as load_rec_processor
|
13 |
+
from surya.model.ordering.processor import load_processor as load_order_processor
|
14 |
+
from surya.model.ordering.model import load_model as load_order_model
|
15 |
+
from surya.ordering import batch_ordering
|
16 |
+
from surya.postprocessing.heatmap import draw_polys_on_image
|
17 |
+
from surya.ocr import run_ocr
|
18 |
+
from surya.postprocessing.text import draw_text_on_image
|
19 |
+
from PIL import Image
|
20 |
+
from surya.languages import CODE_TO_LANGUAGE
|
21 |
+
from surya.input.langs import replace_lang_with_code
|
22 |
+
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult
|
23 |
+
from surya.settings import settings
|
24 |
+
|
25 |
+
parser = argparse.ArgumentParser(description="Run OCR on an image or PDF.")
|
26 |
+
parser.add_argument("--math", action="store_true", help="Use math model for detection", default=False)
|
27 |
+
|
28 |
+
try:
|
29 |
+
args = parser.parse_args()
|
30 |
+
except SystemExit as e:
|
31 |
+
print(f"Error parsing arguments: {e}")
|
32 |
+
os._exit(e.code)
|
33 |
+
|
34 |
+
@st.cache_resource()
|
35 |
+
def load_det_cached():
|
36 |
+
checkpoint = settings.DETECTOR_MATH_MODEL_CHECKPOINT if args.math else settings.DETECTOR_MODEL_CHECKPOINT
|
37 |
+
return load_model(checkpoint=checkpoint), load_processor(checkpoint=checkpoint)
|
38 |
+
|
39 |
+
|
40 |
+
@st.cache_resource()
|
41 |
+
def load_rec_cached():
|
42 |
+
return load_rec_model(), load_rec_processor()
|
43 |
+
|
44 |
+
|
45 |
+
@st.cache_resource()
|
46 |
+
def load_layout_cached():
|
47 |
+
return load_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT), load_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT)
|
48 |
+
|
49 |
+
@st.cache_resource()
|
50 |
+
def load_order_cached():
|
51 |
+
return load_order_model(), load_order_processor()
|
52 |
+
|
53 |
+
|
54 |
+
def text_detection(img) -> (Image.Image, TextDetectionResult):
|
55 |
+
pred = batch_text_detection([img], det_model, det_processor)[0]
|
56 |
+
polygons = [p.polygon for p in pred.bboxes]
|
57 |
+
det_img = draw_polys_on_image(polygons, img.copy())
|
58 |
+
return det_img, pred
|
59 |
+
|
60 |
+
|
61 |
+
def layout_detection(img) -> (Image.Image, LayoutResult):
|
62 |
+
_, det_pred = text_detection(img)
|
63 |
+
pred = batch_layout_detection([img], layout_model, layout_processor, [det_pred])[0]
|
64 |
+
polygons = [p.polygon for p in pred.bboxes]
|
65 |
+
labels = [p.label for p in pred.bboxes]
|
66 |
+
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels)
|
67 |
+
return layout_img, pred
|
68 |
+
|
69 |
+
|
70 |
+
def order_detection(img) -> (Image.Image, OrderResult):
|
71 |
+
_, layout_pred = layout_detection(img)
|
72 |
+
bboxes = [l.bbox for l in layout_pred.bboxes]
|
73 |
+
pred = batch_ordering([img], [bboxes], order_model, order_processor)[0]
|
74 |
+
polys = [l.polygon for l in pred.bboxes]
|
75 |
+
positions = [str(l.position) for l in pred.bboxes]
|
76 |
+
order_img = draw_polys_on_image(polys, img.copy(), labels=positions, label_font_size=20)
|
77 |
+
return order_img, pred
|
78 |
+
|
79 |
+
|
80 |
+
# Function for OCR
|
81 |
+
def ocr(img, langs: List[str]) -> (Image.Image, OCRResult):
|
82 |
+
replace_lang_with_code(langs)
|
83 |
+
img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor)[0]
|
84 |
+
|
85 |
+
bboxes = [l.bbox for l in img_pred.text_lines]
|
86 |
+
text = [l.text for l in img_pred.text_lines]
|
87 |
+
rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs)
|
88 |
+
return rec_img, img_pred
|
89 |
+
|
90 |
+
|
91 |
+
def open_pdf(pdf_file):
|
92 |
+
stream = io.BytesIO(pdf_file.getvalue())
|
93 |
+
return pypdfium2.PdfDocument(stream)
|
94 |
+
|
95 |
+
|
96 |
+
@st.cache_data()
|
97 |
+
def get_page_image(pdf_file, page_num, dpi=96):
|
98 |
+
doc = open_pdf(pdf_file)
|
99 |
+
renderer = doc.render(
|
100 |
+
pypdfium2.PdfBitmap.to_pil,
|
101 |
+
page_indices=[page_num - 1],
|
102 |
+
scale=dpi / 72,
|
103 |
+
)
|
104 |
+
png = list(renderer)[0]
|
105 |
+
png_image = png.convert("RGB")
|
106 |
+
return png_image
|
107 |
+
|
108 |
+
|
109 |
+
@st.cache_data()
|
110 |
+
def page_count(pdf_file):
|
111 |
+
doc = open_pdf(pdf_file)
|
112 |
+
return len(doc)
|
113 |
+
|
114 |
+
|
115 |
+
st.set_page_config(layout="wide")
|
116 |
+
col1, col2 = st.columns([.5, .5])
|
117 |
+
|
118 |
+
det_model, det_processor = load_det_cached()
|
119 |
+
rec_model, rec_processor = load_rec_cached()
|
120 |
+
layout_model, layout_processor = load_layout_cached()
|
121 |
+
order_model, order_processor = load_order_cached()
|
122 |
+
|
123 |
+
|
124 |
+
st.markdown("""
|
125 |
+
# Surya OCR Demo
|
126 |
+
|
127 |
+
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages.
|
128 |
+
|
129 |
+
Notes:
|
130 |
+
- This works best on documents with printed text.
|
131 |
+
- Preprocessing the image (e.g. increasing contrast) can improve results.
|
132 |
+
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease).
|
133 |
+
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list.
|
134 |
+
|
135 |
+
Find the project [here](https://github.com/VikParuchuri/surya).
|
136 |
+
""")
|
137 |
+
|
138 |
+
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
|
139 |
+
languages = st.sidebar.multiselect("Languages", sorted(list(CODE_TO_LANGUAGE.values())), default=["English"], max_selections=4)
|
140 |
+
|
141 |
+
if in_file is None:
|
142 |
+
st.stop()
|
143 |
+
|
144 |
+
filetype = in_file.type
|
145 |
+
whole_image = False
|
146 |
+
if "pdf" in filetype:
|
147 |
+
page_count = page_count(in_file)
|
148 |
+
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
|
149 |
+
|
150 |
+
pil_image = get_page_image(in_file, page_number)
|
151 |
+
else:
|
152 |
+
pil_image = Image.open(in_file).convert("RGB")
|
153 |
+
|
154 |
+
text_det = st.sidebar.button("Run Text Detection")
|
155 |
+
text_rec = st.sidebar.button("Run OCR")
|
156 |
+
layout_det = st.sidebar.button("Run Layout Analysis")
|
157 |
+
order_det = st.sidebar.button("Run Reading Order")
|
158 |
+
|
159 |
+
if pil_image is None:
|
160 |
+
st.stop()
|
161 |
+
|
162 |
+
# Run Text Detection
|
163 |
+
if text_det:
|
164 |
+
det_img, pred = text_detection(pil_image)
|
165 |
+
with col1:
|
166 |
+
st.image(det_img, caption="Detected Text", use_column_width=True)
|
167 |
+
st.json(pred.model_dump(exclude=["heatmap", "affinity_map"]), expanded=True)
|
168 |
+
|
169 |
+
|
170 |
+
# Run layout
|
171 |
+
if layout_det:
|
172 |
+
layout_img, pred = layout_detection(pil_image)
|
173 |
+
with col1:
|
174 |
+
st.image(layout_img, caption="Detected Layout", use_column_width=True)
|
175 |
+
st.json(pred.model_dump(exclude=["segmentation_map"]), expanded=True)
|
176 |
+
|
177 |
+
# Run OCR
|
178 |
+
if text_rec:
|
179 |
+
rec_img, pred = ocr(pil_image, languages)
|
180 |
+
with col1:
|
181 |
+
st.image(rec_img, caption="OCR Result", use_column_width=True)
|
182 |
+
json_tab, text_tab = st.tabs(["JSON", "Text Lines (for debugging)"])
|
183 |
+
with json_tab:
|
184 |
+
st.json(pred.model_dump(), expanded=True)
|
185 |
+
with text_tab:
|
186 |
+
st.text("\n".join([p.text for p in pred.text_lines]))
|
187 |
+
|
188 |
+
if order_det:
|
189 |
+
order_img, pred = order_detection(pil_image)
|
190 |
+
with col1:
|
191 |
+
st.image(order_img, caption="Reading Order", use_column_width=True)
|
192 |
+
st.json(pred.model_dump(), expanded=True)
|
193 |
+
|
194 |
+
with col2:
|
195 |
+
st.image(pil_image, caption="Uploaded Image", use_column_width=True)
|