Spaces:
Runtime error
Runtime error
direct access to hf pipeline
Browse files
app.py
CHANGED
@@ -13,6 +13,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
13 |
# gpt_model = 'gpt-4-1106-preview'
|
14 |
# embedding_model = 'text-embedding-3-small'
|
15 |
default_model_id = "bigcode/starcoder2-3b"
|
|
|
16 |
|
17 |
def init():
|
18 |
if "conversation" not in st.session_state:
|
@@ -38,7 +39,7 @@ def init_llm_pipeline(model_id):
|
|
38 |
task="text-generation",
|
39 |
max_new_tokens=1024
|
40 |
)
|
41 |
-
st.session_state.llm =
|
42 |
|
43 |
def get_retriever(files):
|
44 |
documents = [doc.getvalue().decode("utf-8") for doc in files]
|
@@ -58,17 +59,23 @@ def get_retriever(files):
|
|
58 |
return retriever
|
59 |
|
60 |
def get_conversation(retriever):
|
61 |
-
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
|
|
62 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
|
|
63 |
llm=st.session_state.llm,
|
64 |
-
retriever=retriever
|
65 |
-
memory = memory
|
66 |
)
|
67 |
return conversation_chain
|
68 |
|
|
|
|
|
|
|
|
|
69 |
def handle_user_input(question):
|
70 |
-
|
71 |
-
st.session_state.
|
|
|
72 |
for i, message in enumerate(st.session_state.chat_history):
|
73 |
if i % 2 == 0:
|
74 |
with st.chat_message("user"):
|
|
|
13 |
# gpt_model = 'gpt-4-1106-preview'
|
14 |
# embedding_model = 'text-embedding-3-small'
|
15 |
default_model_id = "bigcode/starcoder2-3b"
|
16 |
+
#default_model_id = "tiiuae/falcon-7b-instruct"
|
17 |
|
18 |
def init():
|
19 |
if "conversation" not in st.session_state:
|
|
|
39 |
task="text-generation",
|
40 |
max_new_tokens=1024
|
41 |
)
|
42 |
+
st.session_state.llm = text_generation_pipeline
|
43 |
|
44 |
def get_retriever(files):
|
45 |
documents = [doc.getvalue().decode("utf-8") for doc in files]
|
|
|
59 |
return retriever
|
60 |
|
61 |
def get_conversation(retriever):
|
62 |
+
#memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
63 |
+
|
64 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
65 |
+
prompt=prompt,
|
66 |
llm=st.session_state.llm,
|
67 |
+
retriever=retriever
|
|
|
68 |
)
|
69 |
return conversation_chain
|
70 |
|
71 |
+
def getprompt(user_input):
|
72 |
+
prompt = f"You are a helpful assistant. Please answer the user question. USER: {user_input} ASSISTANT:"
|
73 |
+
return prompt
|
74 |
+
|
75 |
def handle_user_input(question):
|
76 |
+
st.session_state.chat_history += {"role":"user","content":question}
|
77 |
+
response = st.session_state.llm(getprompt(question))
|
78 |
+
st.session_state.chat_history += {"role":"assistant","content":response}
|
79 |
for i, message in enumerate(st.session_state.chat_history):
|
80 |
if i % 2 == 0:
|
81 |
with st.chat_message("user"):
|