mirix commited on
Commit
e5210b5
1 Parent(s): c3635b0

Upload 4 files

Browse files
Files changed (4) hide show
  1. OECD_DF_CITIES_coord.csv +692 -0
  2. Request_OECD_Data.py +90 -0
  3. app.py +123 -0
  4. requirements.txt +67 -0
OECD_DF_CITIES_coord.csv ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ METRO_ID,Metropolitan areas,"GDP (Million USD, constant prices, constant PPP, base year 2015)",GDP of the metropolitan area as a share of the national GDP,"GDP per capita (USD, constant prices, constant PPP, base year 2015)","Labour productivity (GDP per worker in USD, constant prices, constant PPP, base year 2015)",coordinates
2
+ AT001,Vienna,166392.0,35.6,55770.0,109083.0,"(16.38326716247139, 48.2761)"
3
+ AT002,Graz,35257.0,7.5,53639.0,94692.0,"(15.497918333333335, 47.010899999999985)"
4
+ AT003,Linz,36910.0,7.9,56614.0,102067.0,"(14.408192187499992, 48.42085000000001)"
5
+ AT004,Salzburg,25041.0,5.4,66689.0,112803.0,"(13.219622321428577, 47.79054999999998)"
6
+ AT005,Innsbruck,19702.0,4.2,55891.0,96869.0,"(11.200278232691304, 47.23985)"
7
+ AT006,Klagenfurt,12145.0,2.6,47530.0,96690.0,"(14.369256666666647, 46.637)"
8
+ AUS01,Greater Sydney,242342.0,19.8,45152.0,94639.0,"(150.77585234480614, -33.663653498879086)"
9
+ AUS02,Greater Melbourne,210743.0,17.2,40848.0,84636.0,"(145.1389810152874, -37.83737843858574)"
10
+ AUS03,Greater Brisbane,104327.0,8.5,40741.0,86874.0,"(152.71866783895683, -27.407957863978403)"
11
+ AUS04,Greater Perth,166797.0,13.6,78489.0,158815.0,"(116.02100917188633, -32.1281691313998)"
12
+ AUS05,Greater Adelaide,53937.0,4.4,39181.0,83062.0,"(138.761726338115, -34.925147501363966)"
13
+ AUS06,Gold Coast,24778.0,2.0,38061.0,86874.0,"(153.28562405896508, -28.024977402716807)"
14
+ AUS07,Canberra,26105.0,2.1,60516.0,110018.0,"(148.9563424590107, -35.52241345235738)"
15
+ AUS08,Newcastle,22898.0,1.9,48047.0,94639.0,"(151.85912897450103, -32.83203951013998)"
16
+ AUS10,Wollongong,14121.0,1.2,47071.0,94639.0,"(150.824321852045, -34.475945495619115)"
17
+ AUS14,Geelong,12943.0,1.1,40719.0,84636.0,"(144.31853914923192, -38.18040196983293)"
18
+ BE001,Brussels,194477.0,37.0,58750.0,126982.0,"(4.4621766233766325, 50.77279999999998)"
19
+ BE002,Antwerp,62325.0,11.9,54358.0,116466.0,"(4.467294402985073, 51.27749999999999)"
20
+ BE003,Gent,32341.0,6.1,49777.0,99990.0,"(3.6752615489130447, 51.05704999999999)"
21
+ BE004,Charleroi,14086.0,2.7,27777.0,83371.0,"(4.440963078848565, 50.32395000000001)"
22
+ BE005,Liege,26368.0,5.0,33163.0,89568.0,"(5.544207616054165, 50.516299999999994)"
23
+ BE007,Namur,8641.0,1.6,32386.0,87358.0,"(4.872171306818165, 50.428599999999996)"
24
+ BG001,Sofia,64659.0,45.3,41687.0,63980.0,"(23.420453116883145, 42.66329999999999)"
25
+ BG002,Plovdiv,9334.0,6.5,17431.0,35483.0,"(24.768914967741924, 42.14864999999999)"
26
+ BG003,Varna,7476.0,5.2,18608.0,43312.0,"(27.765631342241704, 43.175249999999984)"
27
+ BG004,Burgas,3575.0,2.5,13317.0,35294.0,"(27.30857797554836, 42.42424999999999)"
28
+ CAN01,Toronto,338881.0,20.3,44561.0,93170.0,"(-79.20385283664399, 44.1359078535573)"
29
+ CAN02,Montreal,179597.0,10.8,38730.0,82656.0,"(-73.75600089896352, 45.823268274057284)"
30
+ CAN03,Vancouver,125349.0,7.5,45902.0,93699.0,"(-122.62597938809151, 49.28811009156763)"
31
+ CAN04,Ottawa,69525.0,4.2,43692.0,90750.0,"(-75.72287303503256, 45.35369728555692)"
32
+ CAN05,Calgary,82316.0,4.9,49035.0,104453.0,"(-113.46743775720662, 51.12535514507874)"
33
+ CAN06,Edmonton,73194.0,4.4,48825.0,104453.0,"(-113.63620104333373, 53.540753421098955)"
34
+ CAN07,Quebec,36597.0,2.2,39814.0,82656.0,"(-71.65846792237231, 46.94262110405917)"
35
+ CAN08,Winnipeg,36227.0,2.2,39282.0,87121.0,"(-97.1152728480915, 49.91058622907096)"
36
+ CAN09,Hamilton,30094.0,1.8,44469.0,93170.0,"(-79.74948162443087, 43.126744295058785)"
37
+ CAN10,London,27477.0,1.6,44175.0,93170.0,"(-81.34067421532514, 42.886832009059326)"
38
+ CAN11,Kitchener,27477.0,1.6,43418.0,93170.0,"(-80.5648036205946, 43.477169892558095)"
39
+ CAN12,Halifax,17641.0,1.1,35001.0,80385.0,"(-63.47249713926203, 44.8844818070568)"
40
+ CAN13,Victoria,17974.0,1.1,42043.0,93699.0,"(-123.450356396995, 48.51624359756423)"
41
+ CAN14,Windsor,17009.0,1.0,42419.0,93170.0,"(-82.87301366769276, 42.161919003561366)"
42
+ CAN15,Saskatoon,14919.0,0.9,46063.0,107928.0,"(-106.71805185133236, 52.23055791108712)"
43
+ CAN16,Sherbrooke,10844.0,0.7,39921.0,82656.0,"(-71.72440825148303, 45.438984749057056)"
44
+ CH001,Zurich,111375.0,18.9,80431.0,118940.0,"(7.438390363636365, 46.9062)"
45
+ CH002,Geneva,50019.0,8.5,83747.0,119430.0,"(8.579030357142855, 47.392500000000005)"
46
+ CH003,Basel,52169.0,8.8,94826.0,138727.0,"(6.171031666666664, 46.3364)"
47
+ CH004,Bern,26833.0,4.5,63890.0,104083.0,"(7.6953138888888954, 47.484049999999996)"
48
+ CH005,Lausanne,24365.0,4.1,57380.0,104555.0,"(6.567266666666669, 46.606500000000004)"
49
+ CL004,Antofagasta,29642.0,7.2,69628.0,165491.0,"(-69.32337198321287, -24.229796946218194)"
50
+ CL006,Coquimbo-La Serena,9365.0,2.3,18072.0,47851.0,"(-71.19889730582537, -30.02246698431388)"
51
+ CL010,Valparaiso,17608.0,4.3,16314.0,43714.0,"(-71.4198748331149, -33.07949702406478)"
52
+ CL011,Santiago,175319.0,42.5,22115.0,51603.0,"(-70.41933459894375, -33.61584975957581)"
53
+ CL014,Rancagua,8116.0,2.0,20345.0,52121.0,"(-70.23758377673701, -34.34966651184648)"
54
+ CL017,Talca,4850.0,1.2,16346.0,38633.0,"(-71.61251722840167, -35.44888039116043)"
55
+ CL020,Concepcion,19841.0,4.8,20013.0,40855.0,"(-73.00263618382532, -36.821945254951856)"
56
+ CL022,Temuco,5980.0,1.5,13097.0,35528.0,"(-72.2499582012039, -38.64741532902184)"
57
+ CL025,Puerto Montt,4670.0,1.1,17335.0,45995.0,"(-72.5822702293913, -41.51279283313855)"
58
+ COL01,Bogota D.C.,180995.0,28.4,19884.0,43857.0,"(-74.15913893264124, 4.3560588732138035)"
59
+ COL02,Medellin,55092.0,8.6,13770.0,33786.0,"(-75.5932427023993, 6.207270712593797)"
60
+ COL03,Cali,37382.0,5.9,14246.0,31552.0,"(-76.51273801950244, 3.395483173276588)"
61
+ COL04,Barranquilla,25875.0,4.1,10596.0,26408.0,"(-74.86070197532636, 10.79713033230463)"
62
+ COL05,Cartagena,11625.0,1.8,8967.0,25581.0,"(-75.39536761052635, 10.36061453883148)"
63
+ COL06,Bucaramanga,21958.0,3.4,17287.0,43548.0,"(-73.11120152284548, 7.024438835541323)"
64
+ COL07,Cucuta,6147.0,1.0,6188.0,21212.0,"(-72.5010093443527, 8.034773444976985)"
65
+ COL08,Pereira,7601.0,1.2,10846.0,26429.0,"(-75.7880115139182, 4.784867356685882)"
66
+ COL09,Ibague,5622.0,0.9,10390.0,26388.0,"(-75.23002240565381, 4.47822695620583)"
67
+ COL10,Manizales,5220.0,0.8,10164.0,27932.0,"(-75.46039693016581, 4.982868483172993)"
68
+ COL11,Santa Marta,3421.0,0.5,6351.0,19722.0,"(-73.87960847937794, 11.086382966286923)"
69
+ COL12,Pasto,2527.0,0.4,6438.0,11954.0,"(-77.18461870021972, 1.0382494304315344)"
70
+ COL13,Armenia,3753.0,0.6,9183.0,24596.0,"(-75.67824340202355, 4.506763789203966)"
71
+ COL14,Villavicencio,9970.0,1.6,18283.0,53410.0,"(-73.50068131424085, 4.110986129229763)"
72
+ COL15,Monteria,2783.0,0.4,5508.0,17337.0,"(-75.96872269367961, 8.604399599940972)"
73
+ COL16,Valledupar,4767.0,0.7,8944.0,29857.0,"(-73.38542351301069, 10.343716298832511)"
74
+ COL17,Buenaventura,5604.0,0.9,17972.0,31552.0,"(-77.00419736512814, 3.6489960327599675)"
75
+ COL18,Neiva,3142.0,0.5,8622.0,21700.0,"(-75.2936245999866, 3.036008793300123)"
76
+ COL19,Palmira,4330.0,0.7,12223.0,31552.0,"(-76.2230774520246, 3.5830461192642904)"
77
+ COL20,Popayan,2424.0,0.4,7448.0,20806.0,"(-76.54619901873524, 2.4427087448390488)"
78
+ COL21,Sincelejo,1836.0,0.3,6246.0,16150.0,"(-75.42508173088031, 9.324974671395772)"
79
+ COL25,Riohacha,1369.0,0.2,6781.0,12402.0,"(-72.88473612410723, 11.235732825277822)"
80
+ CZ001,Prague,134713.0,34.9,59608.0,98645.0,"(14.441507142857123, 50.0004)"
81
+ CZ002,Brno,25852.0,6.7,35141.0,69691.0,"(16.604710703812316, 49.19414999999999)"
82
+ CZ003,Ostrava,20011.0,5.2,28193.0,60039.0,"(18.30495807692307, 49.75039999999999)"
83
+ CZ004,Plzen,11320.0,2.9,32005.0,65279.0,"(13.453041666666667, 49.73064999999999)"
84
+ DE001,Berlin,246885.0,5.9,46548.0,88437.0,"(13.380262499999994, 52.57614999999999)"
85
+ DE002,Hamburg,202409.0,4.9,61058.0,104870.0,"(10.053045208845205, 53.4716)"
86
+ DE003,Munich,244151.0,5.9,83965.0,124432.0,"(11.622013690476193, 48.213249999999995)"
87
+ DE004,Cologne,120774.0,2.9,60310.0,101488.0,"(6.997232142857142, 50.91319999999999)"
88
+ DE005,Frankfurt am Main,188032.0,4.5,69372.0,111728.0,"(8.923038257575756, 50.173749999999984)"
89
+ DE007,Stuttgart,188554.0,4.5,67644.0,112333.0,"(9.215733333333334, 48.781749999999995)"
90
+ DE008,Leipzig,42890.0,1.0,41097.0,78801.0,"(12.488736844262302, 51.34624999999998)"
91
+ DE009,Dresden,53415.0,1.3,39767.0,75767.0,"(13.766536363636366, 51.09249999999998)"
92
+ DE011,Dusseldorf,110710.0,2.7,71238.0,108763.0,"(6.76432499999999, 51.19479999999999)"
93
+ DE012,Bremen,60541.0,1.5,47484.0,86620.0,"(8.891932758620687, 53.09519999999999)"
94
+ DE013,Hanover,72178.0,1.7,54827.0,94945.0,"(9.690674675324676, 52.41329999999999)"
95
+ DE014,Nuremberg,81469.0,2.0,60400.0,96740.0,"(11.035076373626358, 49.43209999999999)"
96
+ DE017,Bielefeld,17124.0,0.4,51238.0,79331.0,"(11.894222499999984, 51.482649999999985)"
97
+ DE018,Halle an der Saale,17327.0,0.4,40847.0,82461.0,"(11.77181825455079, 52.17654999999999)"
98
+ DE019,Magdeburg,19431.0,0.5,38848.0,77489.0,"(8.100518181818185, 50.13304999999998)"
99
+ DE020,Wiesbaden,27731.0,0.7,59862.0,107618.0,"(10.02514318181818, 51.54769999999999)"
100
+ DE021,Gottingen,19174.0,0.5,41637.0,79816.0,"(9.9351811, 51.5328328)"
101
+ DE025,Darmstadt,26272.0,0.6,57575.0,104871.0,"(7.8441975, 48.031150000000004)"
102
+ DE026,Trier,9659.0,0.2,37276.0,75240.0,"(12.07042386363636, 49.02904999999998)"
103
+ DE027,Freiburg im Breisgau,31828.0,0.8,48340.0,84011.0,"(14.386915322580638, 52.34809999999999)"
104
+ DE028,Regensburg,26696.0,0.6,56989.0,92339.0,"(11.35035418803419, 50.96855000000001)"
105
+ DE031,Schwerin,11313.0,0.3,36677.0,74201.0,"(10.828838888888885, 48.383250000000004)"
106
+ DE032,Erfurt,21481.0,0.5,40719.0,74478.0,"(7.119233823529422, 50.62339999999999)"
107
+ DE033,Augsburg,32310.0,0.8,47513.0,88391.0,"(8.353683333333318, 48.97909999999999)"
108
+ DE034,Bonn,53258.0,1.3,57423.0,105481.0,"(6.2810697463768115, 51.20269999999999)"
109
+ DE035,Karlsruhe,45965.0,1.1,60721.0,100798.0,"(8.17861150537636, 49.89219999999999)"
110
+ DE036,Monchengladbach,10949.0,0.3,41920.0,79290.0,"(10.37608030888033, 54.32715)"
111
+ DE037,Mainz,24674.0,0.6,57383.0,101177.0,"(6.983896666666666, 49.27484999999999)"
112
+ DE038,Ruhr,208779.0,5.0,40816.0,84377.0,"(7.6347828, 51.4523694)"
113
+ DE039,Kiel,28031.0,0.7,43282.0,81972.0,"(7.522672499999993, 50.31305000000001)"
114
+ DE040,Saarbrucken,36171.0,0.9,45202.0,80377.0,"(12.172861413043472, 54.0436)"
115
+ DE042,Koblenz,17508.0,0.4,53944.0,85946.0,"(7.718066768292685, 51.376000000000005)"
116
+ DE043,Rostock,16619.0,0.4,39236.0,77424.0,"(12.1400211, 54.0886707)"
117
+ DE044,Kaiserslautern,10227.0,0.2,36904.0,79692.0,"(7.7689951, 49.4432174)"
118
+ DE045,Iserlohn,18340.0,0.4,44501.0,83720.0,"(7.994524999999999, 53.5272)"
119
+ DE052,Flensburg,11179.0,0.3,39056.0,76859.0,"(9.944784302325576, 54.066500000000005)"
120
+ DE054,Constance,12129.0,0.3,43510.0,83402.0,"(8.779203225806455, 50.562200000000004)"
121
+ DE057,Giessen,12117.0,0.3,44900.0,84840.0,"(10.105749188575137, 52.69614999999999)"
122
+ DE061,Aschaffenburg,19035.0,0.5,50925.0,95389.0,"(13.346939583333345, 53.57369999999999)"
123
+ DE064,Neubrandenburg,9008.0,0.2,34761.0,72990.0,"(12.17148777777778, 48.56239999999999)"
124
+ DE069,Rosenheim,14843.0,0.4,45928.0,84416.0,"(9.46587261904762, 47.70964999999998)"
125
+ DE073,Offenburg,21758.0,0.5,50661.0,86381.0,"(7.9429235, 48.4695984)"
126
+ DE074,Gorlitz,8726.0,0.2,34439.0,75865.0,"(10.21148124999998, 50.05520000000001)"
127
+ DE077,Schweinfurt,13802.0,0.3,50749.0,87146.0,"(8.385860294117649, 49.31354999999999)"
128
+ DE079,Wetzlar,10693.0,0.3,42345.0,83326.0,"(12.301974999999999, 51.88894999999998)"
129
+ DE083,Braunschweig-Salzgitter Wolfsburg,71947.0,1.7,72124.0,134588.0,"(7.550954687499997, 51.96534999999999)"
130
+ DE084,Mannheim-Ludwigshafen,66468.0,1.6,55963.0,99338.0,"(12.874717045454542, 50.82664999999999)"
131
+ DE504,Muenster,29800.0,0.7,55829.0,88416.0,"(-97.3762777, 33.6515343)"
132
+ DE507,Aachen,26383.0,0.6,47544.0,85666.0,"(6.083862, 50.776351)"
133
+ DE510,Lubeck,18627.0,0.4,44474.0,82335.0,"(10.684738, 53.866444)"
134
+ DE513,Kassel,21787.0,0.5,49708.0,85444.0,"(9.4978479, 51.3157833)"
135
+ DE517,Osnabruck,23897.0,0.6,45772.0,76824.0,"(8.047635, 52.2719595)"
136
+ DE520,Oldenburg (Oldenburg),18692.0,0.4,44384.0,79317.0,"(8.2146017, 53.1389753)"
137
+ DE522,Heidelberg,35597.0,0.9,50319.0,97267.0,"(8.694724, 49.4093582)"
138
+ DE523,Paderborn,13758.0,0.3,44831.0,82109.0,"(8.752653, 51.7177044)"
139
+ DE524,Wurzburg,25796.0,0.6,50998.0,85530.0,"(9.943476907125579, 49.7780356)"
140
+ DE527,Bremerhaven,10747.0,0.3,34776.0,78108.0,"(8.5851945, 53.5505392)"
141
+ DE529,Heilbronn,33274.0,0.8,70835.0,118008.0,"(9.218655, 49.142291)"
142
+ DE532,Ulm,28369.0,0.7,57153.0,94600.0,"(9.9912458, 48.3984968)"
143
+ DE533,Pforzheim,13749.0,0.3,42506.0,83724.0,"(8.7029532, 48.8908846)"
144
+ DE534,Ingolstadt,38346.0,0.9,77778.0,130426.0,"(11.4250395, 48.7630165)"
145
+ DE537,Reutlingen,14358.0,0.3,50073.0,90401.0,"(9.2114144, 48.4919508)"
146
+ DE540,Siegen,18121.0,0.4,44473.0,83515.0,"(8.0256131, 50.8751175)"
147
+ DE542,Hildesheim,9817.0,0.2,35514.0,76424.0,"(9.9518083, 52.1527188)"
148
+ DE544,Zwickau,12184.0,0.3,38311.0,76706.0,"(12.4939267, 50.7185043)"
149
+ DE546,Wuppertal,15983.0,0.4,45112.0,91069.0,"(7.1780374, 51.264018)"
150
+ DE548,"Duren, Stadt",9754.0,0.2,36987.0,78766.0,"(10.688512490979104, 53.8611271)"
151
+ DE549,"Bocholt, Stadt",17283.0,0.4,46955.0,81465.0,"(6.610609119843669, 51.8379899)"
152
+ DK001,Copenhagen,121521.0,40.3,62474.0,111729.0,"(12.151685937500005, 55.63134999999997)"
153
+ DK002,Aarhus,23998.0,8.0,45549.0,91836.0,"(9.984678571428573, 56.1438)"
154
+ DK003,Odense,14938.0,4.9,39013.0,86478.0,"(10.352344545454532, 55.336800000000025)"
155
+ DK004,Aalborg,13374.0,4.4,41557.0,89493.0,"(9.924874268018021, 57.17120000000001)"
156
+ EE001,Tallinn,18847.0,42.8,47606.0,84897.0,"(25.009314, 59.3334)"
157
+ EL001,Athens,136203.0,45.2,38580.0,80007.0,"(23.799326515151513, 37.99474999999998)"
158
+ EL002,Thessaloniki,25151.0,8.3,23940.0,55314.0,"(23.112519871794873, 40.66909999999994)"
159
+ ES001,Madrid,351140.0,19.6,51020.0,97290.0,"(-3.8847450716277896, 40.37964999999994)"
160
+ ES002,Barcelona,226655.0,12.7,45016.0,92966.0,"(2.001925822368442, 41.47295)"
161
+ ES003,Valencia,58685.0,3.3,33570.0,83933.0,"(-0.4626678787878758, 39.51189999999997)"
162
+ ES004,Seville,46496.0,2.6,30004.0,80067.0,"(-5.885843703148423, 37.34824999999999)"
163
+ ES005,Saragossa,32006.0,1.8,41639.0,88612.0,"(-0.8215128205128188, 41.67204999999999)"
164
+ ES006,Malaga,24068.0,1.3,27694.0,73551.0,"(-4.563913895558223, 36.77674999999999)"
165
+ ES007,Murcia,19720.0,1.1,30928.0,73617.0,"(-1.1585857390510905, 38.01214999999999)"
166
+ ES008,Las Palmas,19146.0,1.1,30201.0,79368.0,"(-15.590419078947367, 28.044700000000006)"
167
+ ES009,Valladolid,16483.0,0.9,38950.0,84127.0,"(-4.6922233576642345, 41.58994999999999)"
168
+ ES010,Palma de Mallorca,30983.0,1.7,44424.0,92647.0,"(2.721235365853644, 39.579649999999965)"
169
+ ES012,Vitoria,14206.0,0.8,50969.0,104873.0,"(-2.662809999999984, 42.8454)"
170
+ ES013,Oviedo,10289.0,0.6,33357.0,84789.0,"(-5.959373333333335, 43.33399999999999)"
171
+ ES014,Pamplona,17362.0,1.0,44535.0,95176.0,"(-1.6366761363636344, 42.89914999999999)"
172
+ ES015,Santander,13989.0,0.8,33620.0,87317.0,"(-3.947326229508192, 43.36999999999999)"
173
+ ES019,Bilbao,46419.0,2.6,46054.0,100548.0,"(-2.952678485599847, 43.23735)"
174
+ ES020,Cordoba,9140.0,0.5,25501.0,71126.0,"(-4.755452193850027, 37.90789999999999)"
175
+ ES021,Alicante,13107.0,0.7,27835.0,77820.0,"(-0.522140030674847, 38.39434999999998)"
176
+ ES022,Vigo,17627.0,1.0,32394.0,82089.0,"(-8.649079777777775, 42.14914999999999)"
177
+ ES023,Gijon,9301.0,0.5,31362.0,84789.0,"(-5.579125862068965, 43.50320000000001)"
178
+ ES025,Santa Cruz de Tenerife,16561.0,0.9,32095.0,80705.0,"(-8.444954952380941, 43.2619)"
179
+ ES026,Coruna (A),13776.0,0.8,32813.0,83629.0,"(1.0880233009708655, 41.15724999999992)"
180
+ ES501,Granada,15311.0,0.9,27038.0,75996.0,"(-3.5995337, 37.1734995)"
181
+ ES505,Elche/Elx,7799.0,0.4,29451.0,77820.0,"(-0.696458, 38.2682326)"
182
+ ES510,Donostia-San Sebastian,17001.0,1.0,49898.0,98449.0,"(-1.9838889, 43.3224219)"
183
+ ES533,Marbella,8239.0,0.5,25386.0,73551.0,"(-4.88562, 36.508976)"
184
+ FI001,Helsinki,89678.0,35.5,59502.0,106078.0,"(24.99356249999998, 60.40345000000001)"
185
+ FI002,Tampere,18643.0,7.4,41954.0,91986.0,"(23.831832673763778, 61.615999999999985)"
186
+ FI003,Turku,15290.0,6.0,42505.0,90306.0,"(22.458222491638814, 60.581999999999994)"
187
+ FR001,Paris,849477.0,31.6,70166.0,127451.0,"(2.3351539314516154, 48.80299999999998)"
188
+ FR003,Lyon,109929.0,4.1,54281.0,101841.0,"(2.977027941176445, 50.581450000000004)"
189
+ FR004,Toulouse,63675.0,2.4,48713.0,92618.0,"(5.610336418015483, 43.478)"
190
+ FR006,Strasbourg,32015.0,1.2,41663.0,89629.0,"(1.4092931372548965, 43.531099999999995)"
191
+ FR007,Bordeaux,51003.0,1.9,42540.0,86007.0,"(-1.5903392045454443, 47.28684999999999)"
192
+ FR008,Nantes,41121.0,1.5,43399.0,89257.0,"(7.099012096774187, 43.90659999999998)"
193
+ FR009,Lille,52795.0,2.0,36864.0,87253.0,"(7.523785000000009, 48.58135)"
194
+ FR010,Montpellier,25192.0,0.9,35738.0,87384.0,"(1.1618899532710367, 49.490399999999994)"
195
+ FR011,Saint-Etienne,15371.0,0.6,33340.0,85341.0,"(3.8042631578947343, 43.675050000000006)"
196
+ FR012,Le Havre,10865.0,0.4,37387.0,85659.0,"(5.7358916666666655, 45.118399999999994)"
197
+ FR013,Rennes,28720.0,1.1,42521.0,87834.0,"(0.6612553571428595, 47.35314999999999)"
198
+ FR014,Amiens,10435.0,0.4,33072.0,82304.0,"(6.935376250000013, 43.58934999999998)"
199
+ FR016,Nancy,15351.0,0.6,32909.0,84400.0,"(-1.73751223404255, 48.09394999999999)"
200
+ FR017,Metz,10305.0,0.4,30914.0,81409.0,"(4.071131968085098, 49.361549999999994)"
201
+ FR018,Reims,12517.0,0.5,39299.0,88728.0,"(1.9155772876892754, 47.85560000000001)"
202
+ FR019,Orleans,15990.0,0.6,38327.0,88702.0,"(6.181711961722467, 48.634699999999995)"
203
+ FR020,Dijon,16201.0,0.6,42209.0,88932.0,"(5.04536462585034, 47.34989999999999)"
204
+ FR021,Poitiers,8762.0,0.3,34537.0,80597.0,"(3.104381988416992, 45.81644999999999)"
205
+ FR022,Clermont-Ferrand,18443.0,0.7,38417.0,88127.0,"(0.3327048368298359, 49.590749999999986)"
206
+ FR023,Caen,14314.0,0.5,34932.0,79584.0,"(4.293844117647058, 45.471849999999996)"
207
+ FR024,Limoges,9874.0,0.4,33355.0,79814.0,"(-0.555676315789474, 47.4827)"
208
+ FR025,Besancon,8768.0,0.3,34242.0,81787.0,"(7.224359375000001, 47.774499999999996)"
209
+ FR026,Grenoble,25727.0,1.0,40035.0,92760.0,"(2.816260236220472, 50.42264999999999)"
210
+ FR028,Saint Denis,8023.0,0.3,26692.0,73537.0,"(4.344635416666658, 43.811199999999985)"
211
+ FR030,Fort-de-France,8888.0,0.3,29129.0,78795.0,"(55.53271671626983, -20.983800000000002)"
212
+ FR032,Toulon,16519.0,0.6,29844.0,81844.0,"(1.2779742424242357, 45.845)"
213
+ FR034,Valenciennes,11750.0,0.4,37904.0,87833.0,"(-4.479007264957251, 48.47900000000001)"
214
+ FR035,Tours,17754.0,0.7,36833.0,83486.0,"(2.2649241666666917, 49.936449999999994)"
215
+ FR036,Angers,13569.0,0.5,33121.0,78116.0,"(2.3332607142857187, 50.94465000000001)"
216
+ FR037,Brest,11915.0,0.4,32862.0,82668.0,"(2.7496125634517776, 42.6669)"
217
+ FR038,Le Mans,10794.0,0.4,31673.0,76976.0,"(6.121344642857141, 45.87649999999999)"
218
+ FR039,Avignon,11527.0,0.4,37502.0,85729.0,"(5.9687801587301585, 47.26559999999999)"
219
+ FR040,Mulhouse,12825.0,0.5,35174.0,88272.0,"(-1.3991839901477787, 43.44330000000001)"
220
+ FR043,Perpignan,11086.0,0.4,28642.0,78477.0,"(4.835051923076923, 43.95649999999999)"
221
+ FR044,Nimes,9373.0,0.3,28542.0,82075.0,"(4.037982916666672, 48.29364999999999)"
222
+ FR045,Pau,10358.0,0.4,38649.0,86133.0,"(3.5016035714285723, 50.320049999999995)"
223
+ FR046,Bayonne,9157.0,0.3,34772.0,85372.0,"(-60.988708333333335, 14.613399999999997)"
224
+ FR048,Annecy,10023.0,0.4,37057.0,90405.0,"(4.9176628787878744, 44.91104999999999)"
225
+ FR202,Aix-en-Provence,14351.0,0.5,43490.0,90932.0,"(5.4474738, 43.5298424)"
226
+ FR203,Marseille,52584.0,2.0,43058.0,91325.0,"(5.3699525, 43.2961743)"
227
+ FR205,Nice,39595.0,1.5,43734.0,90949.0,"(7.2683912, 43.7009358)"
228
+ FR207,Lens - Lievin,8062.0,0.3,28649.0,79952.0,"(2.7738, 50.4245)"
229
+ FR215,Rouen,23538.0,0.9,37577.0,85757.0,"(1.0939658, 49.4404591)"
230
+ FR520,Les Abymes,6985.0,0.3,27163.0,84872.0,"(-61.5057749, 16.2706436)"
231
+ HR001,Zagreb,43835.0,42.7,35934.0,76773.0,"(16.041325, 45.81985000000002)"
232
+ HR005,Split,6888.0,6.7,19432.0,60850.0,"(16.596841818181822, 43.59689999999999)"
233
+ HU001,Budapest,140089.0,47.5,46510.0,66825.0,"(19.118801111111118, 47.5299)"
234
+ HU002,Miskolc,5978.0,2.0,21279.0,61653.0,"(20.82044214285714, 48.14225)"
235
+ HU004,Pecs,5166.0,1.7,20671.0,56738.0,"(18.163721714285714, 46.02644999999998)"
236
+ HU005,Debrecen,7125.0,2.4,21747.0,58932.0,"(21.73566339285714, 47.52444999999999)"
237
+ HU009,Szekesfehervar,7726.0,2.6,29146.0,63630.0,"(18.47023675699301, 47.086249999999986)"
238
+ IE001,Dublin,200048.0,48.5,101483.0,197967.0,"(-6.566274780701752, 53.25505)"
239
+ IE002,Cork,64150.0,15.5,146094.0,297932.0,"(-8.566885526315808, 51.949249999999985)"
240
+ IT001,Rome,217160.0,9.3,50088.0,98416.0,"(12.641361363636356, 41.92685)"
241
+ IT002,Milan,303576.0,13.0,61133.0,112385.0,"(9.18855, 45.456599999999995)"
242
+ IT003,Naples,87255.0,3.7,25952.0,79518.0,"(14.282876470588233, 40.85344999999993)"
243
+ IT004,Turin,75415.0,3.2,43500.0,96388.0,"(7.627746875, 45.06784999999999)"
244
+ IT005,Palermo,24676.0,1.1,24632.0,82119.0,"(13.35926200980392, 38.00109999999999)"
245
+ IT006,Genoa,33001.0,1.4,47634.0,99803.0,"(9.00172222222222, 44.49249999999999)"
246
+ IT007,Florence,43932.0,1.9,55283.0,105675.0,"(11.335024879807694, 43.80104999999999)"
247
+ IT008,Bari,21194.0,0.9,29057.0,74971.0,"(16.75712461538462, 41.025299999999916)"
248
+ IT009,Bologna,42857.0,1.8,54501.0,102985.0,"(11.394499588815792, 44.488749999999996)"
249
+ IT010,Catania,15759.0,0.7,24794.0,78327.0,"(15.032049999999998, 37.55504999999998)"
250
+ IT011,Venice,22132.0,0.9,39681.0,93780.0,"(12.160866323529433, 45.457350000000005)"
251
+ IT012,Verona,22962.0,1.0,44533.0,92739.0,"(10.976464705882352, 45.453149999999994)"
252
+ IT016,Perugia,9762.0,0.4,35053.0,80815.0,"(12.331231289308167, 43.082399999999986)"
253
+ IT022,Taranto,9747.0,0.4,23987.0,71144.0,"(15.809249999999997, 40.656899999999936)"
254
+ IT027,Cagliari,17118.0,0.7,35620.0,79385.0,"(11.876065384615377, 45.378299999999996)"
255
+ IT028,Padua,24078.0,1.0,45014.0,92320.0,"(10.227273214285713, 45.52635000000001)"
256
+ IT029,Brescia,21507.0,0.9,45030.0,98335.0,"(10.925633026755849, 44.663999999999994)"
257
+ IT030,Modena,18170.0,0.8,48834.0,100159.0,"(15.595780530690524, 41.42674999999989)"
258
+ IT501,Messina,6382.0,0.3,24214.0,74529.0,"(15.5542082, 38.1937571)"
259
+ IT502,Prato,12023.0,0.5,42159.0,85270.0,"(11.09414726770089, 43.935718050000006)"
260
+ IT503,Parma,17484.0,0.7,49941.0,98314.0,"(10.097986896904466, 44.6952006)"
261
+ IT505,Reggio nell'Emilia,13611.0,0.6,47788.0,101750.0,"(10.594066675914796, 44.6086674)"
262
+ IT511,Bergamo,13940.0,0.6,44747.0,99929.0,"(9.754219200862249, 45.756655699999996)"
263
+ JPN01,Tokyo,1800719.0,33.1,49700.0,,"(139.40421639190927, 35.68139305261977)"
264
+ JPN02,Osaka,683427.0,12.5,39958.0,,"(135.43881384120579, 34.73036065033425)"
265
+ JPN03,Nagoya,428132.0,7.9,49314.0,,"(136.96081524319408, 35.252673604875454)"
266
+ JPN04,Fukuoka,99925.0,1.8,36120.0,,"(130.3315621731963, 33.57687816017112)"
267
+ JPN05,Sapporo,77230.0,1.4,34903.0,,"(141.47252424716532, 43.259327393214136)"
268
+ JPN06,Sendai,59827.0,1.1,40051.0,,"(140.74231335946777, 38.251362252625164)"
269
+ JPN07,Okayama,59243.0,1.1,38376.0,,"(133.92292147774555, 34.7022687556438)"
270
+ JPN08,Hiroshima,58216.0,1.1,39697.0,,"(132.33612046259003, 34.458950173471216)"
271
+ JPN09,Kitakyushu,49604.0,0.9,36978.0,,"(130.8161683410977, 33.80397069612413)"
272
+ JPN10,Naha,36887.0,0.7,30032.0,,"(127.78062975616112, 26.288261147356597)"
273
+ JPN11,Kumamoto,38624.0,0.7,32881.0,,"(130.86087565924987, 32.86493377763141)"
274
+ JPN12,Yokkaichi,46908.0,0.9,43536.0,,"(136.4036745686775, 34.70304655141475)"
275
+ JPN13,Takasaki,46252.0,0.8,43385.0,,"(138.9079559927634, 36.34338036859269)"
276
+ JPN14,Hamamatsu,44065.0,0.8,45091.0,,"(137.85749493822516, 34.9753388723734)"
277
+ JPN15,Niigata,30312.0,0.6,38044.0,,"(139.01993210264774, 37.84941625141559)"
278
+ JPN16,Utsunomiya,40001.0,0.7,44770.0,,"(140.0028922009272, 36.628798869606236)"
279
+ JPN17,Kanazawa,29579.0,0.5,43039.0,,"(136.63433757269144, 36.47921182174528)"
280
+ JPN18,Oita,27777.0,0.5,37644.0,,"(131.6365312484984, 33.11553199312432)"
281
+ JPN19,Kagoshima,23087.0,0.4,31547.0,,"(130.44877470214902, 31.586559405761086)"
282
+ JPN20,Himeji,26517.0,0.5,36627.0,,"(134.6883180070446, 34.97467564769505)"
283
+ JPN21,Mito,32579.0,0.6,45469.0,,"(140.41167930349644, 36.47209383107909)"
284
+ JPN22,Shizuoka,31956.0,0.6,45245.0,,"(138.25240022721152, 35.27219082859923)"
285
+ JPN23,Toyohashi,35486.0,0.7,52644.0,,"(137.4006658023111, 34.8258236385858)"
286
+ JPN24,Nagasaki,20900.0,0.4,32772.0,,"(129.92381054611783, 32.77227182670789)"
287
+ JPN25,Matsuyama,21908.0,0.4,34331.0,,"(132.85389677885252, 33.81028031501803)"
288
+ JPN26,Toyama,25605.0,0.5,43012.0,,"(137.38442290940898, 36.58518480835422)"
289
+ JPN27,Kofu,23939.0,0.4,40706.0,,"(138.52674108636154, 35.68903811692407)"
290
+ JPN28,Takamatsu,21833.0,0.4,37294.0,,"(134.08769671306356, 34.25573616869514)"
291
+ JPN29,Nagano,22524.0,0.4,38944.0,,"(138.21805198837643, 36.65383757975871)"
292
+ JPN30,Tokushima,22709.0,0.4,39757.0,,"(134.38837017895838, 34.04802246462452)"
293
+ JPN31,Numazu,24892.0,0.5,44825.0,,"(138.9421679930305, 35.07892008289085)"
294
+ JPN32,Fukui,23491.0,0.4,42397.0,,"(136.36645762996176, 36.0228217064162)"
295
+ JPN33,Wakayama,19510.0,0.4,35501.0,,"(135.31227029998703, 34.221019646199764)"
296
+ JPN34,Koriyama,20025.0,0.4,39278.0,,"(140.4562244848426, 37.41953208496197)"
297
+ JPN35,Kochi,16495.0,0.3,32408.0,,"(133.55502462909106, 33.63617667940214)"
298
+ JPN36,Miyazaki,15994.0,0.3,31969.0,,"(131.32876966807487, 32.03073278343913)"
299
+ JPN37,Morioka,16662.0,0.3,40687.0,,"(141.14456824315204, 39.86543013927133)"
300
+ JPN38,Fujieda,20687.0,0.4,44783.0,,"(138.21319622319783, 34.84149415251086)"
301
+ JPN39,Fukushima,17284.0,0.3,39860.0,,"(140.45964152216038, 37.73758850545028)"
302
+ JPN40,Matsumoto,16562.0,0.3,38647.0,,"(137.80700039547122, 36.15394788439424)"
303
+ JPN41,Yamagata,15197.0,0.3,36475.0,,"(140.34362961045423, 38.29457090481303)"
304
+ JPN42,Kurume,16026.0,0.3,38135.0,,"(130.5337324847705, 33.27206652423303)"
305
+ JPN43,Akita,12750.0,0.2,32337.0,,"(140.27906196990756, 39.76102832595949)"
306
+ JPN44,Asahikawa,14007.0,0.3,35983.0,,"(142.45242364701716, 43.72353322196611)"
307
+ JPN45,Kusatsu,17339.0,0.3,44404.0,,"(135.9935637789648, 35.065092737190966)"
308
+ JPN46,Fuji,17870.0,0.3,45073.0,,"(138.56707711162124, 35.28107733123674)"
309
+ JPN47,Isesaki,16365.0,0.3,43298.0,,"(139.31087761920577, 36.437943147746516)"
310
+ JPN48,Hakodate,11357.0,0.2,33610.0,,"(140.77136375532467, 41.886514915593025)"
311
+ JPN49,Hachinohe,10365.0,0.2,31917.0,,"(141.46353112794264, 40.44391263737969)"
312
+ JPN50,Hitachi,14330.0,0.3,46396.0,,"(140.58100363364926, 36.71270797884155)"
313
+ JPN51,Aomori,9733.0,0.2,31604.0,,"(140.96749585532402, 40.91105306306051)"
314
+ JPN53,Obihiro,9275.0,0.2,35353.0,,"(143.06427929946958, 42.83789034152612)"
315
+ KOR01,Seoul,1068311.0,49.8,45120.0,82279.0,"(127.19093779333431, 37.5089573121918)"
316
+ KOR02,Gimhae,150935.0,7.0,33706.0,65343.0,"(129.06803860187173, 35.35642526433162)"
317
+ KOR03,Dalseong,64228.0,3.0,26649.0,52517.0,"(128.5955134161183, 35.811621277464134)"
318
+ KOR04,Gwangsan,51429.0,2.4,33122.0,62508.0,"(126.92496617184665, 35.144966687013834)"
319
+ KOR05,Seo,48872.0,2.3,33493.0,62020.0,"(127.38948195241764, 36.34183912158367)"
320
+ KOR06,Seongsan,42108.0,2.0,38306.0,70288.0,"(128.51286274621236, 35.225356725293594)"
321
+ KOR07,Ulsan,61736.0,2.9,67527.0,131928.0,"(129.35797146757326, 35.568161175767486)"
322
+ KOR08,Heungdeok,46220.0,2.2,52845.0,87728.0,"(127.51671466492621, 36.63126844113172)"
323
+ KOR09,Deokjin,25928.0,1.2,34839.0,63146.0,"(127.16988502874364, 35.87458030475395)"
324
+ KOR10,Sebuk,41273.0,1.9,63352.0,102713.0,"(127.25624806672471, 36.7958998504655)"
325
+ KOR11,Gyeongsan,13179.0,0.6,50350.0,80026.0,"(128.80308449485756, 35.846849991555516)"
326
+ KOR12,Pohan,22276.0,1.0,44359.0,80026.0,"(129.26105695906918, 36.086501536052154)"
327
+ KOR13,Gumi,26008.0,1.2,48983.0,80026.0,"(128.42035711949396, 36.12260515399882)"
328
+ KOR14,Jeju,12034.0,0.6,24719.0,55640.0,"(126.48231945435171, 33.42017597343981)"
329
+ KOR15,Jinju,13291.0,0.6,38393.0,70288.0,"(128.12712564728255, 35.20074141536901)"
330
+ KOR16,Wonju,12772.0,0.6,36559.0,64368.0,"(127.90201415835446, 37.32560140740692)"
331
+ KOR17,Iksan,9664.0,0.5,34128.0,63146.0,"(127.00509040581841, 36.019781864967705)"
332
+ KOR18,Chuncheon,10932.0,0.5,39080.0,64368.0,"(127.78848123113988, 37.88041349096765)"
333
+ KOR19,Gunsan,8309.0,0.4,31156.0,63146.0,"(126.71475445471538, 35.97200481110592)"
334
+ KOR20,Suncheon,14108.0,0.7,50456.0,86619.0,"(127.37121018217815, 35.0099483448636)"
335
+ LT001,Vilnius,26966.0,27.7,51026.0,76706.0,"(25.123335930735923, 54.7178)"
336
+ LT002,Kaunas,10245.0,10.5,35500.0,78807.0,"(23.773007849059816, 54.96119999999999)"
337
+ LU001,Luxembourg,67283.0,99.5,108002.0,143177.0,"(6.086527272727272, 49.815250000000006)"
338
+ LV001,Riga,36779.0,66.1,39537.0,71449.0,"(24.464186263736295, 56.97510000000001)"
339
+ MEX01,Mexico City,474390.0,21.7,23101.0,59651.0,"(-99.22302700914284, 19.496992438500058)"
340
+ MEX02,Guadalajara,99481.0,4.5,18725.0,44601.0,"(-103.4777142434314, 20.661730561500047)"
341
+ MEX03,Monterrey,157935.0,7.2,30225.0,72717.0,"(-100.38925557200415, 25.809160907500008)"
342
+ MEX04,Puebla,29565.0,1.4,10428.0,26689.0,"(-98.17417029226097, 19.002795469718507)"
343
+ MEX05,Toluca,27727.0,1.3,11691.0,28948.0,"(-99.6837458747259, 19.327030954000087)"
344
+ MEX06,Tijuana,39535.0,1.8,20564.0,51410.0,"(-116.7956269111559, 32.378010200000034)"
345
+ MEX07,Leon,24885.0,1.1,14458.0,39516.0,"(-101.64764235149079, 21.097335269500064)"
346
+ MEX08,Queretaro,34821.0,1.6,19284.0,58669.0,"(-99.96461169060578, 20.97498607700006)"
347
+ MEX09,Merida,22859.0,1.0,14113.0,32023.0,"(-89.6348639594145, 20.731422292000047)"
348
+ MEX10,Juarez,29573.0,1.4,19553.0,46929.0,"(-106.44972566689758, 31.452227523000055)"
349
+ MEX11,San Luis Potosi,24383.0,1.1,16928.0,43699.0,"(-101.11272087995505, 22.349441515500033)"
350
+ MEX12,Torreon,26104.0,1.2,20769.0,50683.0,"(-103.64664215100225, 25.340427900000044)"
351
+ MEX13,Mexicali,23576.0,1.1,22458.0,51410.0,"(-115.26228833460658, 31.792248430500102)"
352
+ MEX14,Cuernavaca,12044.0,0.6,11709.0,28466.0,"(-99.23658610824634, 18.85400474600002)"
353
+ MEX15,Villahermosa,20542.0,0.9,21334.0,59402.0,"(-92.82399145434644, 18.016735538500008)"
354
+ MEX16,Culiacan,16046.0,0.7,15990.0,42666.0,"(-107.26755292170984, 24.655306084500083)"
355
+ MEX17,Morelia,11032.0,0.5,10892.0,29640.0,"(-101.1821896134191, 19.670736800000064)"
356
+ MEX18,Chihuahua,19348.0,0.9,20635.0,46929.0,"(-106.38445122536523, 28.93876403100004)"
357
+ MEX19,Veracruz,10586.0,0.5,11564.0,31117.0,"(-96.24737392855457, 19.102520707500002)"
358
+ MEX20,Hermosillo,23303.0,1.1,24890.0,65071.0,"(-111.44636763409984, 28.969263992500075)"
359
+ MEX21,Aguascalientes,20272.0,0.9,21361.0,54918.0,"(-102.30548193975224, 21.847518631000067)"
360
+ MEX22,Acapulco de Juarez,7032.0,0.3,9020.0,20700.0,"(-99.69513358881089, 16.958796507264772)"
361
+ MEX23,Tampico,15273.0,0.7,18375.0,43337.0,"(-98.02024527987152, 22.434243430500068)"
362
+ MEX24,Oaxaca de Juarez,7258.0,0.3,8079.0,20341.0,"(-96.80599907208608, 17.148499077000025)"
363
+ MEX25,Reynosa,15863.0,0.7,18947.0,44161.0,"(-98.25815573818436, 25.80325017700003)"
364
+ MEX26,Xalapa,9894.0,0.5,12115.0,31117.0,"(-96.93364008706243, 19.562953315500046)"
365
+ MEX27,Saltillo,21178.0,1.0,24067.0,62469.0,"(-101.10482344361307, 25.035961792000066)"
366
+ MEX28,Benito Juarez,14536.0,0.7,15489.0,41299.0,"(-87.07500732366393, 20.981541392000054)"
367
+ MEX29,Celaya,10448.0,0.5,15613.0,39516.0,"(-100.79174021998006, 20.59380076150004)"
368
+ MEX30,Durango,9728.0,0.4,14125.0,35072.0,"(-104.9198106029979, 23.911272131000032)"
369
+ MEX31,Tuxtla Gutierrez,3836.0,0.2,6350.0,17303.0,"(-93.14180880499039, 16.745218492000028)"
370
+ MEX32,Pachuca de Soto,7767.0,0.4,11034.0,29609.0,"(-98.7855618690235, 20.055928423000065)"
371
+ MEX33,Irapuato,9498.0,0.4,15690.0,39516.0,"(-101.388542304745, 20.674893654000044)"
372
+ MEX34,Ahome,9466.0,0.4,17028.0,42666.0,"(-109.01373945626788, 26.05338293050004)"
373
+ MEX35,Matamoros,9856.0,0.5,18184.0,44161.0,"(-97.49047446171213, 25.556315961500047)"
374
+ MEX36,Ensenada,12029.0,0.5,21427.0,51410.0,"(-115.23146264024459, 30.192766184500037)"
375
+ MEX37,Poza Rica de Hidalgo,6332.0,0.3,12737.0,31117.0,"(-97.36605561156394, 20.509536799943234)"
376
+ MEX38,Tepic,5763.0,0.3,11733.0,23490.0,"(-104.85616722469396, 21.57827530000005)"
377
+ MEX39,Orizaba,5936.0,0.3,12076.0,31117.0,"(-97.1428718935421, 18.80825375400002)"
378
+ MEX40,Mazatlan,8150.0,0.4,16252.0,42666.0,"(-106.41163327987061, 23.479904515500056)"
379
+ MEX41,Cajeme,11848.0,0.5,27144.0,65071.0,"(-109.9022076157527, 27.711980731000068)"
380
+ MEX42,Nuevo Laredo,7898.0,0.4,18581.0,44161.0,"(-99.67672088643698, 27.47497396150009)"
381
+ MEX43,Guadalupe,5531.0,0.3,12443.0,32279.0,"(-102.51349354621345, 22.700312238500025)"
382
+ MEX44,Coatzacoalcos,4353.0,0.2,12633.0,31117.0,"(-94.3752255997485, 18.12406036200006)"
383
+ MEX45,Tapachula,2221.0,0.1,6279.0,17303.0,"(-92.32231226323375, 14.927460038500069)"
384
+ MEX46,Victoria,6750.0,0.3,19304.0,44161.0,"(-99.12909176090744, 23.688940284500035)"
385
+ MEX47,Tlaxcala,3307.0,0.2,9282.0,23106.0,"(-98.20525590736318, 19.323045961500053)"
386
+ MEX48,Cordoba,4155.0,0.2,12097.0,31117.0,"(-96.91603735433169, 18.903795877000015)"
387
+ MEX49,Uruapan,4179.0,0.2,11712.0,29640.0,"(-102.03429007109662, 19.406043361500043)"
388
+ MEX50,Tehuacan,3836.0,0.2,10138.0,27101.0,"(-97.35529180129325, 18.52003594597958)"
389
+ MEX51,Minatitlan,4155.0,0.2,12963.0,31117.0,"(-94.39796196024275, 17.729549169500018)"
390
+ MEX52,Cuautla,4007.0,0.2,12031.0,28466.0,"(-98.957196323734, 18.76037732300003)"
391
+ MEX53,Chilpancingo de los Bravo,2789.0,0.1,7993.0,20700.0,"(-99.55021703016271, 17.597737922988617)"
392
+ MEX54,Monclova,8218.0,0.4,25653.0,62469.0,"(-101.29154476332614, 26.900590630500094)"
393
+ MEX55,Los Cabos,7354.0,0.3,20946.0,46048.0,"(-109.68976847010606, 23.27184809250006)"
394
+ MEX56,Colima,5798.0,0.3,18898.0,40349.0,"(-103.65217519540575, 19.152246031000054)"
395
+ MEX57,La Paz,6160.0,0.3,21079.0,46048.0,"(-110.51854284541184, 24.10843277700005)"
396
+ MEX58,Campeche,14417.0,0.7,49023.0,118284.0,"(-90.25414932018025, 19.591882454000025)"
397
+ MEX59,Puerto Vallarta,5571.0,0.3,19089.0,44601.0,"(-105.18145001634984, 20.69820781550004)"
398
+ MEX60,Salamanca,4559.0,0.2,16675.0,39516.0,"(-101.16684165437363, 20.65232457700003)"
399
+ MEX61,San Juan del Rio,6628.0,0.3,22257.0,61832.0,"(-100.01196281693696, 20.38704630000005)"
400
+ MEX62,Zamora,3120.0,0.1,11403.0,29640.0,"(-102.25784901585513, 19.995704338500005)"
401
+ MEX63,Tulancingo de Bravo,3177.0,0.1,11841.0,29609.0,"(-98.29864086148933, 20.02700720750004)"
402
+ MT001,Malta,18782.0,95.0,39433.0,77319.0,"(14.41380058823529, 35.9019)"
403
+ NL001,The Hague,59503.0,6.6,53280.0,97668.0,"(4.981747512093978, 52.55230000000001)"
404
+ NL002,Amsterdam,195062.0,21.7,67486.0,118241.0,"(4.767491304347825, 52.7034)"
405
+ NL003,Rotterdam,99226.0,11.0,52888.0,103407.0,"(6.687943768768769, 52.384799999999984)"
406
+ NL004,Utrecht,58813.0,6.5,64829.0,106752.0,"(5.1215634, 52.0907006)"
407
+ NL005,Eindhoven,46277.0,5.1,60308.0,102062.0,"(4.640473507537686, 52.112599999999986)"
408
+ NL006,Tilburg,14502.0,1.6,44966.0,83576.0,"(5.411015225563909, 52.15599999999999)"
409
+ NL007,Groningen,22566.0,2.5,46974.0,96137.0,"(5.9429698996655596, 52.22864999999999)"
410
+ NL008,Enschede,17233.0,1.9,42735.0,83129.0,"(5.905864448051947, 51.96535)"
411
+ NL009,Arnhem,19198.0,2.1,44490.0,88149.0,"(6.556000833333334, 52.914849999999994)"
412
+ NL010,Heerlen,13106.0,1.5,45818.0,95168.0,"(4.260715406976743, 51.50765)"
413
+ NL012,Breda,19001.0,2.1,50847.0,94170.0,"(6.153879782774392, 52.33530000000002)"
414
+ NL013,Nijmegen,14850.0,1.7,44856.0,88190.0,"(5.702906849315072, 52.04454999999999)"
415
+ NL503,s-Hertogenbosch,14270.0,1.6,50964.0,92342.0,"(5.303116, 51.6889387)"
416
+ NL507,Leiden,15160.0,1.7,42752.0,90104.0,"(4.4908843, 52.1594747)"
417
+ NL511,Zwolle,16822.0,1.9,46898.0,83005.0,"(6.0943765, 52.5089759)"
418
+ NL514,Alkmaar,11413.0,1.3,38236.0,82825.0,"(4.817099446443963, 52.600853799999996)"
419
+ NO001,Oslo,93894.0,28.5,67128.0,114685.0,"(10.995399999999997, 59.94930000000001)"
420
+ NO002,Bergen,21452.0,6.5,51095.0,97306.0,"(5.437774999999996, 60.350149999999985)"
421
+ NO003,Trondheim,14395.0,4.4,50436.0,95203.0,"(10.003441402162533, 63.26859999999999)"
422
+ NO004,Stavanger,19749.0,6.0,58137.0,103264.0,"(6.326799235743691, 58.902699999999996)"
423
+ NZL01,Auckland,72953.0,36.6,43225.0,86407.0,"(174.55198050815292, -36.89578009194739)"
424
+ NZL02,Christchurch,19442.0,9.8,38998.0,75789.0,"(172.4838101068763, -43.42234783323403)"
425
+ NZL03,Wellington,20549.0,10.3,46150.0,86003.0,"(175.00011532248283, -41.17894465774749)"
426
+ PL001,Warsaw,216328.0,17.8,67994.0,124881.0,"(21.076861283783792, 52.334149999999994)"
427
+ PL002,Lodz,34151.0,2.8,37618.0,74205.0,"(19.343222444444443, 51.807)"
428
+ PL003,Cracow,57435.0,4.7,40721.0,76524.0,"(20.05848571428571, 50.0791)"
429
+ PL004,Wroclaw,43325.0,3.6,49347.0,83008.0,"(17.022060204081633, 51.132149999999996)"
430
+ PL005,Poznan,51306.0,4.2,51909.0,91304.0,"(17.00082803951367, 52.41255531914894)"
431
+ PL006,Gdansk,45576.0,3.7,39249.0,78588.0,"(18.301784374999993, 54.40164999999999)"
432
+ PL007,Szczecin,16985.0,1.4,35339.0,69406.0,"(14.665451851851847, 53.3604)"
433
+ PL008,Bydgoszcz,15493.0,1.3,31127.0,65697.0,"(18.04632782999164, 53.17824999999999)"
434
+ PL009,Lublin,19260.0,1.6,28732.0,58875.0,"(22.511807692307663, 51.21039999999999)"
435
+ PL010,Katowice,87628.0,7.2,35105.0,82124.0,"(18.89614107142857, 50.30985)"
436
+ PL011,Bialystok,11248.0,0.9,26638.0,60591.0,"(23.12719046717171, 53.24919999999999)"
437
+ PL012,Kielce,9449.0,0.8,24571.0,56847.0,"(20.707314527027027, 50.81349999999999)"
438
+ PL013,Torun,10091.0,0.8,31592.0,65819.0,"(18.702546491228063, 53.0466)"
439
+ PL014,Olsztyn,6221.0,0.5,24718.0,58672.0,"(20.489799999999978, 53.82379999999999)"
440
+ PL015,Rzeszow,14071.0,1.2,27837.0,61998.0,"(22.06984868421051, 50.02285)"
441
+ PL016,Opole,7054.0,0.6,29431.0,66652.0,"(17.80147934782608, 50.6937)"
442
+ PL020,Nowy Sacz,5347.0,0.4,20462.0,55790.0,"(20.77758124999999, 49.588999999999984)"
443
+ PL024,Czestochowa,10923.0,0.9,27747.0,69917.0,"(19.2048415977299, 50.87799999999999)"
444
+ PL025,Radom,6177.0,0.5,22066.0,60916.0,"(21.17630347593582, 51.363749999999996)"
445
+ PL506,Bielsko-Biala,11732.0,1.0,32675.0,76590.0,"(19.029198802013944, 49.81207845)"
446
+ PL511,Walbrzych,4940.0,0.4,22913.0,70443.0,"(16.2825424, 50.7659054)"
447
+ PL514,Tarnow,6010.0,0.5,20394.0,59031.0,"(12.017412, 53.7784289)"
448
+ PT001,Lisbon,115435.0,36.8,38286.0,83181.0,"(-9.27296471861472, 38.83224999999998)"
449
+ PT002,Porto,37004.0,11.8,28902.0,65309.0,"(-8.448049999999999, 41.1301499999999)"
450
+ PT003,Braga,6720.0,2.1,27119.0,57366.0,"(-8.43985, 41.617349999999995)"
451
+ PT005,Coimbra,7600.0,2.4,28573.0,69387.0,"(-8.43698109243698, 40.18249999999996)"
452
+ RO001,Copaceni,141714.0,27.1,64042.0,117218.0,"(26.14978615591398, 44.42305)"
453
+ RO002,Floresti,14275.0,2.7,37188.0,75587.0,"(23.63768461538462, 46.79505)"
454
+ RO003,Giroc,12212.0,2.3,34708.0,76996.0,"(21.22289118589743, 45.73714999999999)"
455
+ RO004,Simnicu De Sus,5620.0,1.1,20939.0,47477.0,"(23.783212499999998, 44.336600000000004)"
456
+ RO012,Modelu,1125.0,0.2,16152.0,35955.0,"(27.353098880669645, 44.230399999999996)"
457
+ RO501,Valu Lui Traian,10258.0,2.0,29225.0,67254.0,"(28.4706714, 44.1636798)"
458
+ RO502,Schitu Duca,8393.0,1.6,21322.0,42402.0,"(27.769727, 47.0351572)"
459
+ RO504,Sinpetru,10922.0,2.1,31496.0,71722.0,"(24.2624285, 46.7158877)"
460
+ SE001,Stockholm,164400.0,32.4,69160.0,124796.0,"(17.966011267605637, 59.49879999999998)"
461
+ SE002,Gothenburg,49017.0,9.6,46624.0,98901.0,"(12.222649999999994, 57.80374999999999)"
462
+ SE003,Malmo,29915.0,5.9,43334.0,94718.0,"(13.225506578947355, 55.59129999999999)"
463
+ SE006,Uppsala,13578.0,2.7,44222.0,97820.0,"(17.61896756756756, 60.13164999999999)"
464
+ SI001,Ljubljana,14853.0,20.4,50264.0,77638.0,"(14.494834687499997, 46.04685)"
465
+ SK001,Bratislava,33015.0,19.0,73812.0,106999.0,"(17.179513157894736, 48.330149999999996)"
466
+ TR001,Ankara,199910.0,8.4,40285.0,,"(32.70634643198021, 39.7806171691507)"
467
+ TR002,Adana,22609.0,1.0,20874.0,,"(35.39033648233729, 37.002392114758784)"
468
+ TR003,Antalya,33411.0,1.4,24142.0,,"(30.670817802846223, 36.95426437247816)"
469
+ TR004,Balikesir,9175.0,0.4,24729.0,,"(27.83149729910272, 39.61752744164294)"
470
+ TR005,Bursa,62852.0,2.6,31303.0,,"(28.891908861675084, 40.173192285000674)"
471
+ TR006,Denizli,15788.0,0.7,25540.0,,"(29.10305849633184, 37.855717977568695)"
472
+ TR007,Diyarbakir,13434.0,0.6,12834.0,,"(40.1714733079163, 38.0262894502642)"
473
+ TR009,Erzurum,5267.0,0.2,17109.0,,"(41.28022929938538, 40.001624740493256)"
474
+ TR010,Gaziantep,38740.0,1.6,22583.0,,"(37.322322839870836, 37.052073289084106)"
475
+ TR011,Hatay,9503.0,0.4,17951.0,,"(36.19508639412589, 36.215755744904925)"
476
+ TR012,Istanbul,631403.0,26.6,46024.0,,"(28.852307807956983, 41.12335000200379)"
477
+ TR013,Izmir,94425.0,4.0,33060.0,,"(27.193881014472367, 38.4049564045517)"
478
+ TR016,Kayseri,27356.0,1.2,25243.0,,"(35.47409110812779, 38.80877297272529)"
479
+ TR017,Kocaeli,37059.0,1.6,46057.0,,"(30.083683927723413, 40.756772883829385)"
480
+ TR018,Konya,31225.0,1.3,23313.0,,"(32.64935729526003, 37.88478863179826)"
481
+ TR019,Malatya,8762.0,0.4,17409.0,,"(38.46411905149898, 38.33557423665823)"
482
+ TR020,Manisa,10962.0,0.5,28079.0,,"(27.377112030860946, 38.680754896309594)"
483
+ TR022,Samsun,11041.0,0.5,19541.0,,"(36.25467723354494, 41.23629595279989)"
484
+ TR024,Trabzon,7609.0,0.3,20183.0,,"(39.690786360993386, 40.93372133174823)"
485
+ TR025,Van,5685.0,0.2,10463.0,,"(43.507634319859115, 38.65838929667217)"
486
+ UK001,London,794425.0,29.0,63802.0,116244.0,"(0.07288596894766614, 51.546899999999994)"
487
+ UK002,West Midlands urban area,101793.0,3.7,32596.0,71532.0,"(-1.870601131221723, 52.5427)"
488
+ UK003,Leeds,91586.0,3.3,34485.0,71976.0,"(-1.6165407509157332, 53.89054999999999)"
489
+ UK004,Glasgow,67434.0,2.5,36506.0,75925.0,"(-3.8696036904762368, 55.687050000000006)"
490
+ UK006,Liverpool,48261.0,1.8,31161.0,70543.0,"(-2.9003604335357656, 53.52954999999999)"
491
+ UK007,Edinburgh,44907.0,1.6,49214.0,91845.0,"(-3.197946157450791, 55.89009999999999)"
492
+ UK008,Manchester,130254.0,4.7,38321.0,81708.0,"(-2.0935439252336456, 53.35124999999999)"
493
+ UK009,Cardiff,30524.0,1.1,32889.0,73250.0,"(-3.2754938356164383, 51.60504999999999)"
494
+ UK010,Sheffield,35315.0,1.3,29320.0,65153.0,"(-1.3922440277777755, 53.360399999999984)"
495
+ UK011,Bristol,43578.0,1.6,44961.0,75611.0,"(-2.5455102713178426, 51.484299999999976)"
496
+ UK012,Belfast,31064.0,1.1,39083.0,114893.0,"(-5.999629403073284, 54.57179999999999)"
497
+ UK013,Newcastle upon Tyne,35901.0,1.3,30104.0,64564.0,"(-2.067796363636359, 55.29910000000001)"
498
+ UK014,Leicester,31426.0,1.1,34500.0,70345.0,"(-1.1880898305084717, 52.607600000000005)"
499
+ UK016,Aberdeen,22772.0,0.8,46489.0,80163.0,"(-2.645559971190779, 57.225849999999994)"
500
+ UK017,Cambridge,16480.0,0.6,43813.0,84800.0,"(0.11422179487179696, 52.259550000000004)"
501
+ UK018,Exeter,15209.0,0.6,30434.0,69642.0,"(-3.382035755813954, 50.74555)"
502
+ UK019,Lincoln,9126.0,0.3,29028.0,71012.0,"(-0.4836028897849269, 53.25174999999999)"
503
+ UK023,Portsmouth,19547.0,0.7,36061.0,86537.0,"(-1.2375365421455866, 50.84125)"
504
+ UK025,Coventry,31384.0,1.1,41008.0,83570.0,"(-1.3996413934426273, 52.38369999999999)"
505
+ UK026,Kingston upon Hull,18923.0,0.7,31416.0,71535.0,"(-0.5469088362068941, 53.892099999999985)"
506
+ UK027,Stoke-on-Trent,15387.0,0.6,31748.0,69508.0,"(-2.083386413043481, 53.051300000000005)"
507
+ UK029,Nottingham,31554.0,1.1,33746.0,71376.0,"(-1.075957667349725, 52.980349999999994)"
508
+ UK033,Guildford,15194.0,0.6,54870.0,114916.0,"(-0.6321770161290317, 51.201299999999996)"
509
+ UK506,Doncaster,8320.0,0.3,26601.0,65608.0,"(-1.102234615384621, 53.53314999999999)"
510
+ UK510,Sunderland,9791.0,0.4,35238.0,79165.0,"(-1.4311104679306363, 54.87235000000001)"
511
+ UK513,Medway,8579.0,0.3,30733.0,76960.0,"(0.5028466808914143, 51.40739999999998)"
512
+ UK515,Brighton and Hove,17240.0,0.6,37523.0,80796.0,"(-0.04385466202999371, 50.8774)"
513
+ UK516,Plymouth,12873.0,0.5,31635.0,58570.0,"(-4.056365176366837, 50.53714999999999)"
514
+ UK517,Swansea,12234.0,0.4,31293.0,67533.0,"(-3.82450375, 51.67025)"
515
+ UK518,Derby,17394.0,0.6,35128.0,69965.0,"(-1.5213228026534003, 52.9149)"
516
+ UK520,Southampton,27328.0,1.0,39310.0,74963.0,"(-1.5260998717948797, 51.02680000000001)"
517
+ UK525,Milton Keynes,19006.0,0.7,70340.0,106002.0,"(-0.7343505760368648, 52.08234999999998)"
518
+ UK528,Northampton,19982.0,0.7,41047.0,87238.0,"(-0.9595654135338353, 52.226049999999994)"
519
+ UK539,Bournemouth,18774.0,0.7,47290.0,74831.0,"(-1.968346159317219, 50.7847)"
520
+ UK546,Colchester,9185.0,0.3,26659.0,67147.0,"(0.9588042053184943, 51.87365)"
521
+ UK550,Dundee City,8048.0,0.3,30410.0,64547.0,"(-2.9286005637367643, 56.71844999999999)"
522
+ UK552,Reading,21948.0,0.8,65657.0,129685.0,"(-0.8849178396871928, 51.4572)"
523
+ UK553,Blackpool,10077.0,0.4,30292.0,64010.0,"(-2.8830787256122896, 53.85449999999998)"
524
+ UK557,Blackburn with Darwen,9436.0,0.3,32183.0,71297.0,"(-2.4582052382279156, 53.831999999999994)"
525
+ UK559,Middlesbrough,16347.0,0.6,28691.0,72111.0,"(-1.2974116049879316, 54.59635)"
526
+ UK560,Oxford,25438.0,0.9,45991.0,84531.0,"(-1.4010187500000026, 51.84314999999998)"
527
+ UK562,Preston,11139.0,0.4,43643.0,80544.0,"(-2.693666341463413, 53.7829)"
528
+ UK566,Norwich,13618.0,0.5,32644.0,67490.0,"(1.3346678571428434, 52.592999999999975)"
529
+ UK568,Cheshire West and Chester,20621.0,0.8,41186.0,82282.0,"(-2.8620310517351513, 53.16980000000001)"
530
+ UK569,Ipswich,12721.0,0.5,26553.0,80362.0,"(1.35291064935065, 52.151799999999994)"
531
+ USA01,New York (Greater),1696526.0,8.8,85746.0,187576.0,"(-74.6551953357119, 40.565723740572224)"
532
+ USA02,Los Angeles (Greater),1102968.0,5.7,62005.0,144045.0,"(-116.6081584146749, 34.598050480580866)"
533
+ USA03,Chicago,638369.0,3.3,67864.0,145558.0,"(-88.22687114120995, 41.70141699906283)"
534
+ USA04,Washington (Greater),711810.0,3.7,77581.0,153488.0,"(-77.44047977601055, 38.85506449907807)"
535
+ USA05,San Francisco (Greater),874062.0,4.5,131082.0,268225.0,"(-121.69419962960662, 37.148927499091535)"
536
+ USA06,Philadelphia (Greater),439703.0,2.3,67906.0,143186.0,"(-75.23813356386574, 39.94866199907105)"
537
+ USA07,Dallas,501484.0,2.6,63131.0,133764.0,"(-96.89230805593432, 33.00411499913767)"
538
+ USA08,Houston,452096.0,2.3,62286.0,144548.0,"(-95.51651537429643, 29.992291499182592)"
539
+ USA09,Miami (Greater),343900.0,1.8,54285.0,121775.0,"(-80.4866807548108, 26.199300443853005)"
540
+ USA10,Atlanta,379969.0,2.0,66317.0,140417.0,"(-84.33454461079646, 33.899212999126206)"
541
+ USA100,Escambia,20239.0,0.1,39567.0,95766.0,"(-87.0943827736233, 30.640306999172132)"
542
+ USA101,Caddo,19261.0,0.1,43912.0,112821.0,"(-93.63993841552602, 32.4232224991456)"
543
+ USA102,Tulare,17484.0,0.1,37305.0,100035.0,"(-118.82341345117763, 36.2659344990998)"
544
+ USA103,Newport News,21870.0,0.1,49457.0,109147.0,"(-76.52845735862246, 37.28299999909038)"
545
+ USA104,York,19773.0,0.1,43897.0,90933.0,"(-76.74213701590529, 39.97162949907094)"
546
+ USA105,Genesee,14851.0,0.1,36687.0,93595.0,"(-83.6932265444751, 43.001572999058936)"
547
+ USA106,Jefferson (TX),23371.0,0.1,54820.0,148785.0,"(-94.39619484484288, 30.374726499176408)"
548
+ USA107,Santa Barbara,27357.0,0.1,61509.0,136641.0,"(-120.03693246971612, 34.74766049911601)"
549
+ USA108,Lafayette,17219.0,0.1,39109.0,97624.0,"(-91.862075627191, 30.19072049917933)"
550
+ USA109,Monterey,24983.0,0.1,57978.0,131608.0,"(-121.49020696000194, 36.353972590979545)"
551
+ USA11,Boston,415707.0,2.2,93725.0,186270.0,"(-71.19218424897451, 42.25703199203978)"
552
+ USA110,Mobile,18665.0,0.1,45224.0,104764.0,"(-88.21563074190766, 30.7439114991705)"
553
+ USA111,Berks,18808.0,0.1,44673.0,96652.0,"(-75.92821430250736, 40.40380749906857)"
554
+ USA112,Cameron,11002.0,0.1,25936.0,72285.0,"(-97.57280119576234, 26.124339746109342)"
555
+ USA113,Bell,18586.0,0.1,39675.0,113195.0,"(-97.89984113240679, 31.237398499162914)"
556
+ USA114,Nueces,20561.0,0.1,47793.0,117483.0,"(-97.67200796013393, 27.8684263121556)"
557
+ USA115,Marion (OR),17729.0,0.1,40575.0,93691.0,"(-123.14764666198893, 44.98462849905677)"
558
+ USA116,Allen,21378.0,0.1,51321.0,114192.0,"(-85.24456243068019, 41.10739839665368)"
559
+ USA117,Scott,20370.0,0.1,53924.0,118217.0,"(-90.39026894104963, 41.4232314990638)"
560
+ USA118,Stark,15508.0,0.1,41939.0,92067.0,"(-81.3674373461017, 40.80972199906654)"
561
+ USA119,Tallahassee,16888.0,0.1,43348.0,95235.0,"(-84.24968133490412, 30.339494499176936)"
562
+ USA12,Phoenix,258857.0,1.3,51158.0,114080.0,"(-112.14317458510878, 33.26809999913422)"
563
+ USA120,Cumberland (NC),18012.0,0.1,45926.0,138325.0,"(-79.05317057982433, 35.05026699911258)"
564
+ USA121,Lane,15272.0,0.1,39877.0,92541.0,"(-122.74923458995484, 43.863878499057435)"
565
+ USA122,Winnebago (IL),14451.0,0.1,43256.0,101580.0,"(-89.05169371361646, 42.325079999060705)"
566
+ USA123,Chatham,20241.0,0.1,51115.0,114000.0,"(-81.43971559092125, 32.158242613903454)"
567
+ USA124,Vanderburgh,20618.0,0.1,58985.0,124569.0,"(-87.54158943673482, 38.08526049908373)"
568
+ USA125,Washtenaw,23784.0,0.1,64900.0,132053.0,"(-83.83750444854633, 42.25272799906095)"
569
+ USA126,Lubbock,15971.0,0.1,42682.0,93592.0,"(-101.82319963325284, 33.63659299912945)"
570
+ USA127,Madison,24685.0,0.1,65055.0,137239.0,"(-86.57222299807466, 34.73383899911617)"
571
+ USA128,Marion (FL),10477.0,0.1,28050.0,81632.0,"(-82.02268782118608, 29.23744749919527)"
572
+ USA129,Peoria,17580.0,0.1,56042.0,131572.0,"(-89.7721323578875, 40.77141899906674)"
573
+ USA13,Detroit (Greater),237799.0,1.2,54453.0,124993.0,"(-83.50699152093283, 42.44318818893038)"
574
+ USA130,Collier,19421.0,0.1,49420.0,119045.0,"(-81.34547480886532, 26.164143911084984)"
575
+ USA131,Luzerne,14366.0,0.1,45322.0,101178.0,"(-75.95476838749619, 41.165733999064905)"
576
+ USA132,Lancaster (NE),20558.0,0.1,58432.0,110149.0,"(-96.91611666197963, 40.697794499067086)"
577
+ USA133,Thurston,15072.0,0.1,41601.0,95061.0,"(-123.17068956846197, 47.184896999059646)"
578
+ USA134,Sebastian,10641.0,0.1,34268.0,87296.0,"(-94.53373798359917, 35.134903999111664)"
579
+ USA135,Roanoke,15288.0,0.1,48722.0,103582.0,"(-80.04643508318833, 37.29125749909033)"
580
+ USA136,Muscogee,14241.0,0.1,44136.0,119103.0,"(-84.91290691297533, 32.40102649914594)"
581
+ USA137,Brown,18870.0,0.1,58352.0,115877.0,"(-88.07910885418008, 44.812201991240975)"
582
+ USA138,Alachua,15181.0,0.1,45683.0,102087.0,"(-82.69567537068083, 29.469894999191304)"
583
+ USA139,Larimer,19892.0,0.1,55189.0,105126.0,"(-105.44628426355038, 40.63165299906743)"
584
+ USA14,Seattle,393290.0,2.0,97867.0,197725.0,"(-121.84313774937141, 47.513341999060515)"
585
+ USA140,Boulder,27343.0,0.1,83573.0,152230.0,"(-105.34485746350211, 40.08794549907029)"
586
+ USA141,Potter,17420.0,0.1,59297.0,130176.0,"(-101.68465251517091, 35.184294499111076)"
587
+ USA142,Cumberland (ME),21747.0,0.1,72950.0,142252.0,"(-70.41353621203706, 43.84877014865651)"
588
+ USA143,Erie (PA),10855.0,0.1,40441.0,93500.0,"(-80.01409230635579, 42.062294910232595)"
589
+ USA144,St. Lucie,9566.0,0.0,28371.0,71038.0,"(-80.46816378563184, 27.394857035231844)"
590
+ USA145,Nashville,16513.0,0.1,46633.0,91759.0,"(-86.25338936944148, 35.85950249910388)"
591
+ USA146,Atlantic City,12080.0,0.1,45943.0,117430.0,"(-74.68275730125549, 39.510087999073704)"
592
+ USA147,McLennan,13376.0,0.1,45249.0,107251.0,"(-97.23432970410263, 31.599513499157496)"
593
+ USA148,Durham,35687.0,0.2,109031.0,224661.0,"(-78.86819997573679, 36.05019849910195)"
594
+ USA149,Lackawanna,11170.0,0.1,42938.0,96936.0,"(-75.42853144043393, 41.57987599906329)"
595
+ USA15,Minneapolis,247638.0,1.3,68427.0,131711.0,"(-93.42818828332807, 45.31540849905684)"
596
+ USA150,St. Joseph,13211.0,0.1,48664.0,108195.0,"(-86.2735483045521, 41.59806799906321)"
597
+ USA151,Santa Cruz,14596.0,0.1,54075.0,120196.0,"(-122.03212929321967, 37.068425999092256)"
598
+ USA152,Webb,11193.0,0.1,39249.0,102787.0,"(-99.37049163010975, 27.94979399921821)"
599
+ USA153,Minnehaha,23089.0,0.1,76670.0,138932.0,"(-96.83004524929325, 43.651760999057714)"
600
+ USA154,Merced,8876.0,0.0,31785.0,88089.0,"(-120.60741172777318, 37.19229949909116)"
601
+ USA155,Benton (WA),15135.0,0.1,49867.0,110292.0,"(-119.34607052441118, 46.286978999057794)"
602
+ USA156,Weld,15393.0,0.1,46089.0,99992.0,"(-104.54576682243457, 40.49310149906812)"
603
+ USA157,Kalamazoo,13078.0,0.1,49169.0,107452.0,"(-85.53152343929332, 42.24538199906096)"
604
+ USA158,Butte,9959.0,0.1,41317.0,103874.0,"(-122.06176607129456, 39.71878699907242)"
605
+ USA16,San Diego,221463.0,1.2,66457.0,158672.0,"(-116.69506111683818, 33.02341374147656)"
606
+ USA160,Yakima,10101.0,0.1,40104.0,83583.0,"(-120.64809440276304, 46.563772999058244)"
607
+ USA161,Brazos,12985.0,0.1,45939.0,100970.0,"(-96.39160508917544, 30.825880999169243)"
608
+ USA162,Tuscaloosa,10659.0,0.1,42095.0,95502.0,"(-87.82543995221299, 33.04178899913715)"
609
+ USA17,St. Louis,150663.0,0.8,57886.0,119951.0,"(-90.45124048042217, 38.70170149907914)"
610
+ USA170,Benton (AR),14850.0,0.1,51423.0,109850.0,"(-94.22756779979373, 36.299162975461776)"
611
+ USA18,Denver,205558.0,1.1,68720.0,134117.0,"(-104.86620423009336, 39.36888749907465)"
612
+ USA19,San Antonio,122512.0,0.6,46920.0,110803.0,"(-98.6311544437276, 29.36484049919308)"
613
+ USA20,Portland,151470.0,0.8,63044.0,129527.0,"(-122.67265870559889, 45.64262403331793)"
614
+ USA21,Cincinnati,139091.0,0.7,64406.0,136926.0,"(-84.5688804955476, 39.02544149907689)"
615
+ USA22,Las Vegas,111852.0,0.6,47211.0,117692.0,"(-115.60856069581378, 37.04441499909246)"
616
+ USA23,Orange,132739.0,0.7,50292.0,112423.0,"(-81.42467835357178, 28.458930999208945)"
617
+ USA24,Jackson (MO),128716.0,0.7,61530.0,124780.0,"(-94.50797250412216, 39.0815499990765)"
618
+ USA25,Indianapolis,135078.0,0.7,65069.0,136416.0,"(-86.30323082206078, 39.848385999071674)"
619
+ USA26,Cuyahoga,123094.0,0.6,60228.0,134849.0,"(-81.67550474499512, 41.4232544990638)"
620
+ USA27,New Haven,133825.0,0.7,74580.0,155211.0,"(-73.07516091661734, 41.326066999064224)"
621
+ USA28,Charlotte,147410.0,0.8,69841.0,146480.0,"(-80.89276911223223, 35.16472022749326)"
622
+ USA29,Sacramento,133951.0,0.7,56406.0,134760.0,"(-121.15934646490146, 38.667659999079376)"
623
+ USA30,Austin,155595.0,0.8,67428.0,133493.0,"(-97.84277198128703, 30.26940349917809)"
624
+ USA31,Columbus,125714.0,0.7,59786.0,124538.0,"(-82.85387115832911, 40.03046349907066)"
625
+ USA32,Milwaukee,94330.0,0.5,59790.0,124055.0,"(-88.21458897052725, 43.19337030300457)"
626
+ USA33,Jacksonville,86490.0,0.4,51320.0,114066.0,"(-81.9255962869132, 30.389169005938264)"
627
+ USA34,Salt Lake,115154.0,0.6,68158.0,134288.0,"(-112.47307121309439, 40.65321723072847)"
628
+ USA35,Tampa-Pinellas,62422.0,0.3,40345.0,94248.0,"(-82.71725735760077, 28.048057574902124)"
629
+ USA36,Jefferson (KY),72311.0,0.4,51376.0,109630.0,"(-85.7333452596335, 38.18877999908294)"
630
+ USA37,Memphis,70548.0,0.4,53482.0,123903.0,"(-89.79843568111272, 35.07526549911232)"
631
+ USA38,Davidson,104009.0,0.5,70450.0,138649.0,"(-86.8122775659285, 36.13073549910113)"
632
+ USA39,Oklahoma,68102.0,0.4,49162.0,108445.0,"(-97.46510527530012, 35.513587999107486)"
633
+ USA40,Hartford,91484.0,0.5,76142.0,149520.0,"(-72.65479323487205, 41.64685499906305)"
634
+ USA41,Pittsburgh,104518.0,0.5,73699.0,153086.0,"(-80.15205957380262, 40.31074899906906)"
635
+ USA42,New Orleans,68136.0,0.4,54442.0,130815.0,"(-89.91100579246077, 29.818824557474034)"
636
+ USA43,Virginia Beach,60129.0,0.3,50308.0,110577.0,"(-76.38248408030299, 36.520788499097335)"
637
+ USA44,Erie (NY),64370.0,0.3,57185.0,130391.0,"(-78.68480164282374, 42.903305200737485)"
638
+ USA45,Fresno (Greater),48340.0,0.3,41720.0,107991.0,"(-119.58200384111744, 36.83928799909433)"
639
+ USA46,Richmond (Greater),77539.0,0.4,64985.0,132382.0,"(-77.7087223674256, 37.676766499086995)"
640
+ USA47,Wake,86120.0,0.4,63863.0,137045.0,"(-78.56261625744918, 35.66370049910598)"
641
+ USA48,Jefferson (AL),58073.0,0.3,53350.0,116602.0,"(-86.79467809804294, 33.638727499129395)"
642
+ USA49,Tampa-Hillsborough,89201.0,0.5,59548.0,128230.0,"(-82.25843306895668, 27.90939906864196)"
643
+ USA50,Pima,41610.0,0.2,39211.0,93840.0,"(-111.78079365770611, 31.968144999152067)"
644
+ USA51,Tulsa,51227.0,0.3,48901.0,109945.0,"(-95.91508964996143, 36.18355699910065)"
645
+ USA52,Albany,64449.0,0.3,66108.0,139026.0,"(-73.97185794351924, 42.74836449905959)"
646
+ USA53,Providence,49867.0,0.3,51130.0,105204.0,"(-71.59827062176566, 41.662519252133166)"
647
+ USA54,Albuquerque,42126.0,0.2,44344.0,103951.0,"(-107.3571057585562, 35.24146599911049)"
648
+ USA55,Douglas (NE),63981.0,0.3,66577.0,133802.0,"(-96.03204118231561, 41.22759399906468)"
649
+ USA56,Rochester (NY),48435.0,0.3,57437.0,127465.0,"(-77.74832684466739, 42.92397799905912)"
650
+ USA57,Kern,41624.0,0.2,46179.0,123908.0,"(-118.72037770812705, 35.31282449910968)"
651
+ USA58,Ventura,49024.0,0.3,58266.0,131326.0,"(-119.08332277353648, 34.47000799911925)"
652
+ USA59,El Paso (TX),31426.0,0.2,37138.0,94817.0,"(-105.42313822580265, 31.315927999161683)"
653
+ USA60,East Baton Rouge,48176.0,0.3,57561.0,126765.0,"(-91.15616776492573, 30.537889499173787)"
654
+ USA61,Worcester,42190.0,0.2,50880.0,105206.0,"(-71.9579167269545, 42.365502499060604)"
655
+ USA62,Hidalgo,21103.0,0.1,24112.0,66856.0,"(-98.18730795053699, 26.403921999247842)"
656
+ USA63,Richland,40419.0,0.2,48869.0,110351.0,"(-81.04571920136584, 34.04007849912443)"
657
+ USA64,Lehigh,39252.0,0.2,52988.0,111559.0,"(-75.49796918371307, 40.77659395348164)"
658
+ USA65,Sarasota,36374.0,0.2,42558.0,109156.0,"(-82.31276128752938, 27.29530549923048)"
659
+ USA66,Montgomery (OH),37360.0,0.2,53239.0,121920.0,"(-84.0665569699593, 39.73673149907232)"
660
+ USA67,San Joaquin,29955.0,0.2,39005.0,101349.0,"(-121.24756993968364, 37.891644499085274)"
661
+ USA68,Kent,41189.0,0.2,57035.0,116803.0,"(-85.55087133476525, 43.11841349905872)"
662
+ USA69,Charleston,41999.0,0.2,51236.0,115497.0,"(-79.99501510064783, 33.00071699913772)"
663
+ USA70,Onondaga,38553.0,0.2,59676.0,135208.0,"(-76.17767550434152, 43.21336299905852)"
664
+ USA71,El Paso (CO),36389.0,0.2,48272.0,110141.0,"(-104.69191272501699, 38.8280279990782)"
665
+ USA72,Ada,36125.0,0.2,45281.0,96597.0,"(-116.05663699853817, 43.23666749905849)"
666
+ USA73,Hampden,28711.0,0.1,45908.0,101518.0,"(-72.6068845415802, 42.276377499060885)"
667
+ USA74,Lee,31814.0,0.2,40232.0,100121.0,"(-81.83880940993164, 26.544516860991017)"
668
+ USA75,Sedgwick,32191.0,0.2,52818.0,116728.0,"(-97.16673896980328, 37.54821899908811)"
669
+ USA76,Polk,51018.0,0.3,75013.0,148211.0,"(-93.78491374740003, 41.37764099906403)"
670
+ USA77,Dauphin,37865.0,0.2,62426.0,129572.0,"(-77.17380084787911, 40.32372649906902)"
671
+ USA78,Lucas,29885.0,0.2,53423.0,119124.0,"(-83.64919119840988, 41.438627999063755)"
672
+ USA79,Pulaski,31420.0,0.2,53176.0,119608.0,"(-92.3341567760684, 34.743826999115996)"
673
+ USA80,Dane,44603.0,0.2,73096.0,131779.0,"(-89.38708056130508, 43.245034499058434)"
674
+ USA81,Brevard,25510.0,0.1,41925.0,97626.0,"(-80.73490475182439, 28.305034308753378)"
675
+ USA82,Summit,28199.0,0.1,52331.0,114755.0,"(-81.53962957923102, 41.13152399906507)"
676
+ USA83,Hamilton (TN),28793.0,0.1,50520.0,112944.0,"(-85.43128036181359, 35.06854349911241)"
677
+ USA84,Utah,29361.0,0.2,44272.0,94628.0,"(-111.69243285066493, 39.94624699907112)"
678
+ USA85,Lancaster (PA),27575.0,0.1,50485.0,104403.0,"(-76.23406868989677, 40.01879999907069)"
679
+ USA86,Stanislaus,22296.0,0.1,40532.0,103748.0,"(-120.87146637628341, 37.61384399908755)"
680
+ USA87,Greene,21191.0,0.1,38961.0,84783.0,"(-93.38390482491815, 37.42336149908918)"
681
+ USA88,Fayette,27915.0,0.1,50724.0,105086.0,"(-84.40993595633398, 37.98342899908454)"
682
+ USA89,Spokane,26111.0,0.1,47178.0,103930.0,"(-117.2392550092174, 48.12976749906258)"
683
+ USA90,Volusia-Daytona Beach,18101.0,0.1,32237.0,79297.0,"(-81.13768471484374, 29.019797999199028)"
684
+ USA91,Guilford,31839.0,0.2,58905.0,137554.0,"(-79.79008858734176, 36.0753969991017)"
685
+ USA92,Sonoma,28785.0,0.1,58766.0,127695.0,"(-122.85572919299706, 38.480804072688876)"
686
+ USA93,Forsyth,26706.0,0.1,52314.0,121007.0,"(-80.4581219423689, 36.148084499100975)"
687
+ USA94,Washoe,30902.0,0.2,57268.0,123568.0,"(-119.66768034110348, 40.201110999069655)"
688
+ USA95,Ingham,22824.0,0.1,47500.0,101912.0,"(-84.6157357010089, 42.76741299905953)"
689
+ USA96,Montgomery (AL),19495.0,0.1,43603.0,99604.0,"(-86.16820858676499, 32.07899949915048)"
690
+ USA97,Knox,26062.0,0.1,52566.0,110368.0,"(-83.86493860017782, 36.114588499101345)"
691
+ USA98,Greenville,30902.0,0.2,58034.0,130239.0,"(-82.35119768988046, 34.84929449911485)"
692
+ USA99,Mahoning,15288.0,0.1,36153.0,92217.0,"(-80.76076154969738, 41.19739849906473)"
Request_OECD_Data.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import pandas as pd
3
+ import geopandas as gpd
4
+ from geopy.geocoders import Nominatim
5
+ geolocator = Nominatim(user_agent='Cities OECD')
6
+
7
+ import requests
8
+ import requests_cache
9
+ from retry_requests import retry
10
+ from fake_useragent import UserAgent
11
+ ua = UserAgent(browsers=['Chrome'])
12
+
13
+ cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
14
+ retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
15
+
16
+ headers = {
17
+ 'Sec-Fetch-Dest': 'empty',
18
+ 'Sec-Fetch-Mode': 'cors',
19
+ 'Sec-Fetch-Site': 'same-origin',
20
+ 'Upgrade-Insecure-Requests': '1',
21
+ 'Connection': 'keep-alive',
22
+ 'Accept-Encoding': 'gzip, deflate, br',
23
+ 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
24
+ 'Accept-Language': 'en-US,en;q=0.9',
25
+ 'Cache-Control': 'max-age=0',
26
+ 'User-Agent': ua.random,
27
+ }
28
+
29
+ url_data = 'https://sdmx.oecd.org/archive/rest/data/OECD,DF_CITIES,/all?startPeriod=2018&dimensionAtObservation=AllDimensions&format=csvfilewithlabels'
30
+
31
+ def geocode_nan(row):
32
+ if pd.isnull(row['coordinates']):
33
+ geolocate = row['Metropolitan areas']
34
+ location = geolocator.geocode(geolocate, timeout=10)
35
+ row['coordinates'] = (location.longitude, location.latitude)
36
+ else:
37
+ row['coordinates'] = row['coordinates']
38
+ return row
39
+
40
+ def oecd_data():
41
+
42
+ csv = retry_session.get(url_data, headers=headers)
43
+
44
+ df = pd.read_csv(io.StringIO(csv.text), usecols=['METRO_ID', 'Metropolitan areas', 'Variables', 'TIME_PERIOD', 'OBS_VALUE'], low_memory=False)
45
+
46
+ variables = ['Income', 'GDP']
47
+
48
+ df = df[df['Variables'].str.contains('|'.join(variables))].copy()
49
+
50
+ df = df.sort_values(['METRO_ID', 'Variables', 'TIME_PERIOD'], ascending=[True, True, True])
51
+ df = df.drop_duplicates(subset=['METRO_ID', 'Variables'], keep='last')
52
+
53
+ df_concat = df[['METRO_ID', 'Metropolitan areas']].sort_values('METRO_ID').drop_duplicates(subset='METRO_ID', keep='first').reset_index(drop=True)
54
+ df_concat = df_concat[df_concat['METRO_ID'].str.len() > 3].reset_index(drop=True).copy()
55
+
56
+ df_groups = df.groupby('Variables')
57
+
58
+ for group in df_groups:
59
+ group_name = group[0]
60
+ group = group[1][['METRO_ID', 'OBS_VALUE']]
61
+ group = group.rename(columns={'OBS_VALUE': group_name})
62
+ df_concat = df_concat.merge(group, on='METRO_ID', how='left')
63
+
64
+ df_concat.to_csv('OECD_DF_CITIES_all.csv', encoding='utf-8', index=False)
65
+
66
+ url_shap = 'https://www.oecd.org/content/dam/oecd/en/data/datasets/oecd-definition-of-cities-and-functional-urban-areas/fuas%20(1).zip'
67
+
68
+ shape = retry_session.get(url_shap, headers=headers)
69
+
70
+ with open('OECD_FUAS_shape.zip', 'wb') as z:
71
+ z.write(shape.content)
72
+
73
+ df_fua = gpd.read_file('OECD_FUAS_shape.zip')
74
+
75
+ df_fua['centroid'] = df_fua.representative_point()
76
+ df_fua['coordinates'] = df_fua['centroid'].apply(lambda p: (p.x, p.y))
77
+ df_fua['fuacode'] = df_fua['fuacode'].str.replace(r'F$', '', regex=True)
78
+
79
+ df_fua = df_fua[['fuacode', 'coordinates']]
80
+ df_fua = df_fua.rename(columns={'fuacode': 'METRO_ID'})
81
+
82
+ df_merged = df_concat.merge(df_fua, on='METRO_ID', how='left')
83
+
84
+ #df_merged[['Longitude', 'Latitude']] = df_merged.apply(lambda x: geocode_nan(x) if pd.isnull(x['Longitude']) else [x['Longitude'], x['Latitude']], axis=1, result_type='expand')
85
+
86
+ df_merged = df_merged.apply(geocode_nan, axis=1)
87
+
88
+ df_merged.to_csv('OECD_DF_CITIES_coord.csv', encoding='utf-8', index=False)
89
+
90
+ return df_merged
app.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pycountry
3
+ import numpy as np
4
+ import pandas as pd
5
+ import gradio as gr
6
+ from datetime import datetime
7
+ import plotly.graph_objects as go
8
+
9
+ from Request_OECD_Data import oecd_data
10
+
11
+ master_file = 'OECD_DF_CITIES_coord.csv'
12
+
13
+ def reload_data(master_file):
14
+ if os.path.isfile(master_file):
15
+ now = datetime.now()
16
+ fdate = datetime.fromtimestamp(os.path.getmtime(master_file))
17
+ delta = (now - fdate).days
18
+ if delta > 30:
19
+ df = oecd_data()
20
+ else:
21
+ df = pd.read_csv(master_file)
22
+ else:
23
+ df = oecd_data()
24
+ return df
25
+
26
+ def feat_list():
27
+
28
+ global feats
29
+ global feat_simp
30
+ global feat_dict
31
+
32
+ df = reload_data(master_file)
33
+ non_feat = ['METRO_ID', 'Metropolitan areas', 'coordinates']
34
+ feats = [f for f in df.columns.tolist() if f not in non_feat]
35
+ feat_simp = [f.split(' (')[0] for f in feats]
36
+ feat_dict = dict(zip(feat_simp, feats))
37
+
38
+ return feat_simp
39
+
40
+ feat_list()
41
+
42
+ def feat_chooser(feat):
43
+ feat_simp = feat_list()
44
+ index = feat_simp.index(feat)
45
+ choosen_feat = '<h2>' + feat_dict[feat] + '</h2>'
46
+ features = gr.Dropdown(choices=feat_simp, label='Select the economic descriptor', value=feat_simp[index], interactive=True)
47
+ fig = plot_feat(feat)
48
+ return choosen_feat, features, fig
49
+
50
+ def plot_feat(feat):
51
+
52
+ feat = feat_dict[feat]
53
+
54
+ print(feat)
55
+
56
+ df = reload_data(master_file)
57
+ df = df.dropna(subset=[feat])
58
+
59
+ df = df.sort_values(by=feat, ascending=False)
60
+ df = df.reset_index(drop=True).reset_index().rename(columns={'index': 'Rank'})
61
+ df['Rank'] = df['Rank'] + 1
62
+ df['digit'] = df['Rank'].astype(str).str.len().astype(int) + 2
63
+ df['pad'] = '&nbsp;'
64
+ df['pad']= df['pad'].str.repeat(df['digit'])
65
+
66
+ df['Latitude'] = df['coordinates'].str.split(',').str[1].str.replace(r'\)', '', regex=True)
67
+ df['Longitude'] = df['coordinates'].str.split(',').str[0].str.replace(r'\(', '', regex=True)
68
+
69
+ df['ISO2'] = df['METRO_ID'].apply(lambda s: ''.join(c for c in s if c.isalpha()))
70
+ def iso_to_iso(row):
71
+ if len(row) > 2:
72
+ row = pycountry.countries.get(alpha_3=row).alpha_2
73
+ else:
74
+ if row == 'EL':
75
+ row = 'GR'
76
+ elif row == 'UK':
77
+ row = 'GB'
78
+ else:
79
+ row = row
80
+ return row
81
+
82
+ df['Country Code'] = df['ISO2'].apply(lambda x: iso_to_iso(x))
83
+ df['Flag'] = df['Country Code'].apply(lambda x: pycountry.countries.get(alpha_2=x).flag)
84
+
85
+ fig = go.Figure()
86
+
87
+ fig.add_trace(go.Choropleth())
88
+
89
+ fig.add_trace(go.Scattergeo(
90
+ lon = df['Longitude'],
91
+ lat = df['Latitude'],
92
+ text = df['Rank'].astype(str) + '. ' + '<b>' + df['Metropolitan areas'] + '</b>' + '&nbsp;' + df['Flag'] + '<br>' + df['pad'] + '<b>' + '$' + df[feat].astype(str) + 'K' + '</b>',
93
+ hoverinfo='text',
94
+ name = '',
95
+ mode = 'markers',
96
+ marker = dict(
97
+ size = df[feat],
98
+ #sizemin=4,
99
+ sizeref=2.*max(df[feat])/(40.**2),
100
+ sizemode = 'area',
101
+ color = df[feat],
102
+ colorscale='Portland',
103
+ showscale=True,
104
+ ),
105
+
106
+ ))
107
+
108
+ fig.update_geos(projection_type='orthographic', projection_rotation = {'lat': 49.6112768, 'lon': 6.129799, 'roll': 0}, projection_scale = 1)
109
+ fig.update_layout(height=1080, hoverlabel=dict(font_size=14,font_family='Courier New, monospace'))
110
+
111
+ return fig
112
+
113
+ ### Gradio app ###
114
+ with gr.Blocks() as demo:
115
+ gr.HTML('<h1>OECD Functional Urban Areas</h1>')
116
+ features = gr.Dropdown(choices=feat_simp, label='Select the economic descriptor', value=feat_simp[0], interactive=True)
117
+ choosen_feat = gr.HTML(feat_dict[feat_simp[0]])
118
+ world_map = gr.Plot()
119
+ features.input(fn=feat_chooser, inputs=features, outputs=[choosen_feat, features, world_map])
120
+ demo.load(plot_feat, [features], world_map)
121
+
122
+ port = int(os.environ.get('PORT', 7860))
123
+ demo.launch(server_name="0.0.0.0", server_port=port)
requirements.txt ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiofiles==23.2.1
2
+ annotated-types==0.7.0
3
+ anyio==4.7.0
4
+ attrs==24.3.0
5
+ cattrs==24.1.2
6
+ certifi==2024.12.14
7
+ charset-normalizer==3.4.0
8
+ click==8.1.7
9
+ fake-useragent==2.0.3
10
+ fastapi==0.115.6
11
+ ffmpy==0.4.0
12
+ filelock==3.16.1
13
+ fsspec==2024.10.0
14
+ geographiclib==2.0
15
+ geopandas==1.0.1
16
+ geopy==2.4.1
17
+ gradio==5.9.1
18
+ gradio_client==1.5.2
19
+ h11==0.14.0
20
+ httpcore==1.0.7
21
+ httpx==0.28.1
22
+ huggingface-hub==0.27.0
23
+ idna==3.10
24
+ Jinja2==3.1.4
25
+ markdown-it-py==3.0.0
26
+ MarkupSafe==2.1.5
27
+ mdurl==0.1.2
28
+ numpy==2.2.0
29
+ orjson==3.10.12
30
+ packaging==24.2
31
+ pandas==2.2.3
32
+ pillow==11.0.0
33
+ platformdirs==4.3.6
34
+ plotly==5.24.1
35
+ pycountry==24.6.1
36
+ pydantic==2.10.3
37
+ pydantic_core==2.27.1
38
+ pydub==0.25.1
39
+ Pygments==2.18.0
40
+ pyogrio==0.10.0
41
+ pyproj==3.7.0
42
+ python-dateutil==2.9.0.post0
43
+ python-multipart==0.0.20
44
+ pytz==2024.2
45
+ PyYAML==6.0.2
46
+ requests==2.32.3
47
+ requests-cache==1.2.1
48
+ retry-requests==2.0.0
49
+ rich==13.9.4
50
+ ruff==0.8.3
51
+ safehttpx==0.1.6
52
+ semantic-version==2.10.0
53
+ shapely==2.0.6
54
+ shellingham==1.5.4
55
+ six==1.17.0
56
+ sniffio==1.3.1
57
+ starlette==0.41.3
58
+ tenacity==9.0.0
59
+ tomlkit==0.13.2
60
+ tqdm==4.67.1
61
+ typer==0.15.1
62
+ typing_extensions==4.12.2
63
+ tzdata==2024.2
64
+ url-normalize==1.4.3
65
+ urllib3==2.2.3
66
+ uvicorn==0.34.0
67
+ websockets==14.1