Spaces:
Runtime error
Runtime error
File size: 18,823 Bytes
4442007 f8f8514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import os
import re
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.applications import efficientnet
#import efficientnet
from tensorflow.keras.layers import TextVectorization
seed = 111
np.random.seed(seed)
tf.random.set_seed(seed)
# Path to the images
IMAGES_PATH = "Flicker8k_Dataset"
# Desired image dimensions
IMAGE_SIZE = (299, 299)
# Vocabulary size
VOCAB_SIZE = 10000
# Fixed length allowed for any sequence
SEQ_LENGTH = 25
# Dimension for the image embeddings and token embeddings
EMBED_DIM = 512
# Per-layer units in the feed-forward network
FF_DIM = 512
# Other training parameters
BATCH_SIZE = 64
EPOCHS = 30
AUTOTUNE = tf.data.AUTOTUNE
strip_chars = "!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"
strip_chars = strip_chars.replace("<", "")
strip_chars = strip_chars.replace(">", "")
def decode_and_resize(img_path):
img = tf.io.read_file(img_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, IMAGE_SIZE)
img = tf.image.convert_image_dtype(img, tf.float32)
return img
def custom_standardization(input_string):
lowercase = tf.strings.lower(input_string)
return tf.strings.regex_replace(lowercase, "[%s]" % re.escape(strip_chars), "")
vectorization = TextVectorization(
max_tokens=VOCAB_SIZE,
output_mode="int",
output_sequence_length=SEQ_LENGTH,
standardize=custom_standardization,
)
def load_captions_data(filename):
"""Loads captions (text) data and maps them to corresponding images.
Args:
filename: Path to the text file containing caption data.
Returns:
caption_mapping: Dictionary mapping image names and the corresponding captions
text_data: List containing all the available captions
"""
with open(filename) as caption_file:
caption_data = caption_file.readlines()
caption_mapping = {}
text_data = []
images_to_skip = set()
for line in caption_data:
line = line.rstrip("\n")
# Image name and captions are separated using a tab
img_name, caption = line.split("\t")
# Each image is repeated five times for the five different captions.
# Each image name has a suffix `#(caption_number)`
img_name = img_name.split("#")[0]
img_name = os.path.join(IMAGES_PATH, img_name.strip())
# We will remove caption that are either too short to too long
tokens = caption.strip().split()
if len(tokens) < 5 or len(tokens) > SEQ_LENGTH:
images_to_skip.add(img_name)
continue
if img_name.endswith("jpg") and img_name not in images_to_skip:
# We will add a start and an end token to each caption
caption = "<start> " + caption.strip() + " <end>"
text_data.append(caption)
if img_name in caption_mapping:
caption_mapping[img_name].append(caption)
else:
caption_mapping[img_name] = [caption]
for img_name in images_to_skip:
if img_name in caption_mapping:
del caption_mapping[img_name]
return caption_mapping, text_data
# Load the dataset
captions_mapping, text_data = load_captions_data("Flickr8k.token.txt")
vectorization.adapt(text_data)
def process_input(img_path, captions):
return decode_and_resize(img_path), vectorization(captions)
def make_dataset(images, captions):
dataset = tf.data.Dataset.from_tensor_slices((images, captions))
dataset = dataset.shuffle(BATCH_SIZE * 8)
dataset = dataset.map(process_input, num_parallel_calls=AUTOTUNE)
dataset = dataset.batch(BATCH_SIZE).prefetch(AUTOTUNE)
return dataset
def train_val_split(caption_data, train_size=0.8, shuffle=True):
"""Split the captioning dataset into train and validation sets.
Args:
caption_data (dict): Dictionary containing the mapped caption data
train_size (float): Fraction of all the full dataset to use as training data
shuffle (bool): Whether to shuffle the dataset before splitting
Returns:
Traning and validation datasets as two separated dicts
"""
# 1. Get the list of all image names
all_images = list(caption_data.keys())
# 2. Shuffle if necessary
if shuffle:
np.random.shuffle(all_images)
# 3. Split into training and validation sets
train_size = int(len(caption_data) * train_size)
training_data = {
img_name: caption_data[img_name] for img_name in all_images[:train_size]
}
validation_data = {
img_name: caption_data[img_name] for img_name in all_images[train_size:]
}
# 4. Return the splits
return training_data, validation_data
# Split the dataset into training and validation sets
train_data, valid_data = train_val_split(captions_mapping)
# print("Number of training samples: ", len(train_data))
# print("Number of validation samples: ", len(valid_data))
train_dataset = make_dataset(list(train_data.keys()), list(train_data.values()))
valid_dataset = make_dataset(list(valid_data.keys()), list(valid_data.values()))
def get_cnn_model():
base_model = efficientnet.EfficientNetB0(
input_shape=(*IMAGE_SIZE, 3), include_top=False, weights="imagenet",
)
# We freeze our feature extractor
base_model.trainable = False
base_model_out = base_model.output
base_model_out = layers.Reshape((-1, base_model_out.shape[-1]))(base_model_out)
cnn_model = keras.models.Model(base_model.input, base_model_out)
return cnn_model
def load_captions_data(filename):
"""Loads captions (text) data and maps them to corresponding images.
Args:
filename: Path to the text file containing caption data.
Returns:
caption_mapping: Dictionary mapping image names and the corresponding captions
text_data: List containing all the available captions
"""
with open(filename) as caption_file:
caption_data = caption_file.readlines()
caption_mapping = {}
text_data = []
images_to_skip = set()
for line in caption_data:
line = line.rstrip("\n")
# Image name and captions are separated using a tab
img_name, caption = line.split("\t")
# Each image is repeated five times for the five different captions.
# Each image name has a suffix `#(caption_number)`
img_name = img_name.split("#")[0]
img_name = os.path.join(IMAGES_PATH, img_name.strip())
# We will remove caption that are either too short to too long
tokens = caption.strip().split()
if len(tokens) < 5 or len(tokens) > SEQ_LENGTH:
images_to_skip.add(img_name)
continue
if img_name.endswith("jpg") and img_name not in images_to_skip:
# We will add a start and an end token to each caption
caption = "<start> " + caption.strip() + " <end>"
text_data.append(caption)
if img_name in caption_mapping:
caption_mapping[img_name].append(caption)
else:
caption_mapping[img_name] = [caption]
for img_name in images_to_skip:
if img_name in caption_mapping:
del caption_mapping[img_name]
return caption_mapping, text_data
def train_val_split(caption_data, train_size=0.8, shuffle=True):
"""Split the captioning dataset into train and validation sets.
Args:
caption_data (dict): Dictionary containing the mapped caption data
train_size (float): Fraction of all the full dataset to use as training data
shuffle (bool): Whether to shuffle the dataset before splitting
Returns:
Traning and validation datasets as two separated dicts
"""
# 1. Get the list of all image names
all_images = list(caption_data.keys())
# 2. Shuffle if necessary
if shuffle:
np.random.shuffle(all_images)
# 3. Split into training and validation sets
train_size = int(len(caption_data) * train_size)
training_data = {
img_name: caption_data[img_name] for img_name in all_images[:train_size]
}
validation_data = {
img_name: caption_data[img_name] for img_name in all_images[train_size:]
}
# 4. Return the splits
return training_data, validation_data
# Load the dataset
captions_mapping, text_data = load_captions_data("Flickr8k.token.txt")
# Split the dataset into training and validation sets
train_data, valid_data = train_val_split(captions_mapping)
# print("Number of training samples: ", len(train_data))
# print("Number of validation samples: ", len(valid_data))
# Data augmentation for image data
image_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.2),
layers.RandomContrast(0.3),
]
)
class TransformerEncoderBlock(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.0
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.dense_1 = layers.Dense(embed_dim, activation="relu")
def call(self, inputs, training, mask=None):
inputs = self.layernorm_1(inputs)
inputs = self.dense_1(inputs)
attention_output_1 = self.attention_1(
query=inputs,
value=inputs,
key=inputs,
attention_mask=None,
training=training,
)
out_1 = self.layernorm_2(inputs + attention_output_1)
return out_1
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
super().__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=embed_dim
)
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embed_dim = embed_dim
self.embed_scale = tf.math.sqrt(tf.cast(embed_dim, tf.float32))
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_tokens = embedded_tokens * self.embed_scale
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, 0)
class TransformerDecoderBlock(layers.Layer):
def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.ff_dim = ff_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
)
self.ffn_layer_1 = layers.Dense(ff_dim, activation="relu")
self.ffn_layer_2 = layers.Dense(embed_dim)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.embedding = PositionalEmbedding(
embed_dim=EMBED_DIM, sequence_length=SEQ_LENGTH, vocab_size=VOCAB_SIZE
)
self.out = layers.Dense(VOCAB_SIZE, activation="softmax")
self.dropout_1 = layers.Dropout(0.3)
self.dropout_2 = layers.Dropout(0.5)
self.supports_masking = True
def call(self, inputs, encoder_outputs, training, mask=None):
inputs = self.embedding(inputs)
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
combined_mask = tf.minimum(combined_mask, causal_mask)
attention_output_1 = self.attention_1(
query=inputs,
value=inputs,
key=inputs,
attention_mask=combined_mask,
training=training,
)
out_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=out_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
training=training,
)
out_2 = self.layernorm_2(out_1 + attention_output_2)
ffn_out = self.ffn_layer_1(out_2)
ffn_out = self.dropout_1(ffn_out, training=training)
ffn_out = self.ffn_layer_2(ffn_out)
ffn_out = self.layernorm_3(ffn_out + out_2, training=training)
ffn_out = self.dropout_2(ffn_out, training=training)
preds = self.out(ffn_out)
return preds
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0,
)
return tf.tile(mask, mult)
class ImageCaptioningModel(keras.Model):
def __init__(
self, cnn_model, encoder, decoder, num_captions_per_image=5, image_aug=None,
):
super().__init__()
self.cnn_model = cnn_model
self.encoder = encoder
self.decoder = decoder
self.loss_tracker = keras.metrics.Mean(name="loss")
self.acc_tracker = keras.metrics.Mean(name="accuracy")
self.num_captions_per_image = num_captions_per_image
self.image_aug = image_aug
def calculate_loss(self, y_true, y_pred, mask):
loss = self.loss(y_true, y_pred)
mask = tf.cast(mask, dtype=loss.dtype)
loss *= mask
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
def calculate_accuracy(self, y_true, y_pred, mask):
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
accuracy = tf.math.logical_and(mask, accuracy)
accuracy = tf.cast(accuracy, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
def _compute_caption_loss_and_acc(self, img_embed, batch_seq, training=True):
encoder_out = self.encoder(img_embed, training=training)
batch_seq_inp = batch_seq[:, :-1]
batch_seq_true = batch_seq[:, 1:]
mask = tf.math.not_equal(batch_seq_true, 0)
batch_seq_pred = self.decoder(
batch_seq_inp, encoder_out, training=training, mask=mask
)
loss = self.calculate_loss(batch_seq_true, batch_seq_pred, mask)
acc = self.calculate_accuracy(batch_seq_true, batch_seq_pred, mask)
return loss, acc
def train_step(self, batch_data):
batch_img, batch_seq = batch_data
batch_loss = 0
batch_acc = 0
if self.image_aug:
batch_img = self.image_aug(batch_img)
# 1. Get image embeddings
img_embed = self.cnn_model(batch_img)
# 2. Pass each of the five captions one by one to the decoder
# along with the encoder outputs and compute the loss as well as accuracy
# for each caption.
for i in range(self.num_captions_per_image):
with tf.GradientTape() as tape:
loss, acc = self._compute_caption_loss_and_acc(
img_embed, batch_seq[:, i, :], training=True
)
# 3. Update loss and accuracy
batch_loss += loss
batch_acc += acc
# 4. Get the list of all the trainable weights
train_vars = (
self.encoder.trainable_variables + self.decoder.trainable_variables
)
# 5. Get the gradients
grads = tape.gradient(loss, train_vars)
# 6. Update the trainable weights
self.optimizer.apply_gradients(zip(grads, train_vars))
# 7. Update the trackers
batch_acc /= float(self.num_captions_per_image)
self.loss_tracker.update_state(batch_loss)
self.acc_tracker.update_state(batch_acc)
# 8. Return the loss and accuracy values
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
def test_step(self, batch_data):
batch_img, batch_seq = batch_data
batch_loss = 0
batch_acc = 0
# 1. Get image embeddings
img_embed = self.cnn_model(batch_img)
# 2. Pass each of the five captions one by one to the decoder
# along with the encoder outputs and compute the loss as well as accuracy
# for each caption.
for i in range(self.num_captions_per_image):
loss, acc = self._compute_caption_loss_and_acc(
img_embed, batch_seq[:, i, :], training=False
)
# 3. Update batch loss and batch accuracy
batch_loss += loss
batch_acc += acc
batch_acc /= float(self.num_captions_per_image)
# 4. Update the trackers
self.loss_tracker.update_state(batch_loss)
self.acc_tracker.update_state(batch_acc)
# 5. Return the loss and accuracy values
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
@property
def metrics(self):
# We need to list our metrics here so the `reset_states()` can be
# called automatically.
return [self.loss_tracker, self.acc_tracker]
cnn_model = get_cnn_model()
encoder = TransformerEncoderBlock(embed_dim=EMBED_DIM, dense_dim=FF_DIM, num_heads=1)
decoder = TransformerDecoderBlock(embed_dim=EMBED_DIM, ff_dim=FF_DIM, num_heads=2)
new_model = ImageCaptioningModel(
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=image_augmentation,
)
new_model.load_weights('model_weights') |