File size: 947 Bytes
b44b575 27bfbc7 b44b575 27bfbc7 ddd8378 27bfbc7 b44b575 844b14d 4ef680d f4929d8 dd39d76 27bfbc7 905c3cb 27bfbc7 f4929d8 1156e83 27bfbc7 485ada3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
from fastai.vision.all import *
from icevision.all import *
from fastai.basics import *
from fastai.callback import *
from icevision import models
import gradio as gr
import PIL
class_map = ClassMap(['kangaroo'])
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True), num_classes=len(class_map))
state_dict = torch.load('fasterRCNNKangaroo.pth', map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
size = 384
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()])
def predict(img):
img = PILImage.create(img)
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
return pred_dict['img']
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128,128)), outputs=gr.outputs.Image(),examples=['00001.jpg','00002.jpg']).launch(share=False) |