|
import warnings |
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
import argparse |
|
import os |
|
import os.path as osp |
|
|
|
import mmcv |
|
import torch |
|
from mmcv import DictAction |
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel |
|
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, |
|
wrap_fp16_model) |
|
|
|
from mogen.apis import multi_gpu_test, single_gpu_test |
|
from mogen.datasets import build_dataloader, build_dataset |
|
from mogen.models import build_architecture |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='mogen evaluation') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('--work-dir', |
|
help='the dir to save evaluation results') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument('--out', help='output result file') |
|
parser.add_argument('--gpu_collect', |
|
action='store_true', |
|
help='whether to use gpu to collect results') |
|
parser.add_argument('--tmpdir', help='tmp dir for writing some results') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file.') |
|
parser.add_argument('--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
parser.add_argument('--device', |
|
choices=['cpu', 'cuda'], |
|
default='cuda', |
|
help='device used for testing') |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
cfg = mmcv.Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
if cfg.get('cudnn_benchmark', False): |
|
torch.backends.cudnn.benchmark = True |
|
cfg.data.test.test_mode = True |
|
|
|
|
|
if args.launcher == 'none': |
|
distributed = False |
|
else: |
|
distributed = True |
|
init_dist(args.launcher, **cfg.dist_params) |
|
|
|
|
|
dataset = build_dataset(cfg.data.test) |
|
|
|
data_loader = build_dataloader(dataset, |
|
samples_per_gpu=cfg.data.samples_per_gpu, |
|
workers_per_gpu=cfg.data.workers_per_gpu, |
|
dist=distributed, |
|
shuffle=False, |
|
round_up=False) |
|
|
|
|
|
model = build_architecture(cfg.model) |
|
fp16_cfg = cfg.get('fp16', None) |
|
if fp16_cfg is not None: |
|
wrap_fp16_model(model) |
|
load_checkpoint(model, args.checkpoint, map_location='cpu') |
|
|
|
if not distributed: |
|
if args.device == 'cpu': |
|
model = model.cpu() |
|
else: |
|
model = MMDataParallel(model, device_ids=[0]) |
|
outputs = single_gpu_test(model, data_loader) |
|
else: |
|
model = MMDistributedDataParallel( |
|
model.cuda(), |
|
device_ids=[torch.cuda.current_device()], |
|
broadcast_buffers=False) |
|
outputs = multi_gpu_test(model, data_loader, args.tmpdir, |
|
args.gpu_collect) |
|
|
|
rank, _ = get_dist_info() |
|
if rank == 0: |
|
mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) |
|
results = dataset.evaluate(outputs, args.work_dir) |
|
for k, v in results.items(): |
|
print(f'\n{k} : {v:.4f}') |
|
|
|
if args.out and rank == 0: |
|
print(f'\nwriting results to {args.out}') |
|
mmcv.dump(results, args.out) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|