|
|
|
""" |
|
This code is borrowed from https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/gaussian_diffusion.py |
|
""" |
|
|
|
import enum |
|
import math |
|
from abc import ABC, abstractmethod |
|
|
|
import numpy as np |
|
import torch as th |
|
import torch.distributed as dist |
|
|
|
|
|
def create_named_schedule_sampler(name, diffusion): |
|
""" |
|
Create a ScheduleSampler from a library of pre-defined samplers. |
|
:param name: the name of the sampler. |
|
:param diffusion: the diffusion object to sample for. |
|
""" |
|
if name == "uniform": |
|
return UniformSampler(diffusion) |
|
elif name == "loss-second-moment": |
|
return LossSecondMomentResampler(diffusion) |
|
elif name == "pretrain": |
|
return PretrainSampler(diffusion) |
|
else: |
|
raise NotImplementedError(f"unknown schedule sampler: {name}") |
|
|
|
|
|
class ScheduleSampler(ABC): |
|
""" |
|
A distribution over timesteps in the diffusion process, intended to reduce |
|
variance of the objective. |
|
By default, samplers perform unbiased importance sampling, in which the |
|
objective's mean is unchanged. |
|
However, subclasses may override sample() to change how the resampled |
|
terms are reweighted, allowing for actual changes in the objective. |
|
""" |
|
|
|
@abstractmethod |
|
def weights(self): |
|
""" |
|
Get a numpy array of weights, one per diffusion step. |
|
The weights needn't be normalized, but must be positive. |
|
""" |
|
|
|
def sample(self, batch_size, device): |
|
""" |
|
Importance-sample timesteps for a batch. |
|
:param batch_size: the number of timesteps. |
|
:param device: the torch device to save to. |
|
:return: a tuple (timesteps, weights): |
|
- timesteps: a tensor of timestep indices. |
|
- weights: a tensor of weights to scale the resulting losses. |
|
""" |
|
w = self.weights() |
|
p = w / np.sum(w) |
|
indices_np = np.random.choice(len(p), size=(batch_size, ), p=p) |
|
indices = th.from_numpy(indices_np).long().to(device) |
|
weights_np = 1 / (len(p) * p[indices_np]) |
|
weights = th.from_numpy(weights_np).float().to(device) |
|
return indices, weights |
|
|
|
|
|
class UniformSampler(ScheduleSampler): |
|
|
|
def __init__(self, diffusion): |
|
self.diffusion = diffusion |
|
self._weights = np.ones([diffusion.num_timesteps]) |
|
|
|
def weights(self): |
|
return self._weights |
|
|
|
|
|
class PretrainSampler(ScheduleSampler): |
|
|
|
def __init__(self, diffusion): |
|
self.diffusion = diffusion |
|
|
|
t = np.arange(diffusion.num_timesteps) |
|
self._weights = np.cos(t / 2000 * np.pi) |
|
|
|
def weights(self): |
|
return self._weights |
|
|
|
|
|
class LossAwareSampler(ScheduleSampler): |
|
|
|
def update_with_local_losses(self, local_ts, local_losses): |
|
""" |
|
Update the reweighting using losses from a model. |
|
Call this method from each rank with a batch of timesteps and the |
|
corresponding losses for each of those timesteps. |
|
This method will perform synchronization to make sure all of the ranks |
|
maintain the exact same reweighting. |
|
:param local_ts: an integer Tensor of timesteps. |
|
:param local_losses: a 1D Tensor of losses. |
|
""" |
|
batch_sizes = [ |
|
th.tensor([0], dtype=th.int32, device=local_ts.device) |
|
for _ in range(dist.get_world_size()) |
|
] |
|
dist.all_gather( |
|
batch_sizes, |
|
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device), |
|
) |
|
|
|
|
|
batch_sizes = [x.item() for x in batch_sizes] |
|
max_bs = max(batch_sizes) |
|
|
|
timestep_batches = [ |
|
th.zeros(max_bs).to(local_ts) for bs in batch_sizes |
|
] |
|
loss_batches = [ |
|
th.zeros(max_bs).to(local_losses) for bs in batch_sizes |
|
] |
|
dist.all_gather(timestep_batches, local_ts) |
|
dist.all_gather(loss_batches, local_losses) |
|
timesteps = [ |
|
x.item() for y, bs in zip(timestep_batches, batch_sizes) |
|
for x in y[:bs] |
|
] |
|
losses = [ |
|
x.item() for y, bs in zip(loss_batches, batch_sizes) |
|
for x in y[:bs] |
|
] |
|
self.update_with_all_losses(timesteps, losses) |
|
|
|
@abstractmethod |
|
def update_with_all_losses(self, ts, losses): |
|
""" |
|
Update the reweighting using losses from a model. |
|
Sub-classes should override this method to update the reweighting |
|
using losses from the model. |
|
This method directly updates the reweighting without synchronizing |
|
between workers. It is called by update_with_local_losses from all |
|
ranks with identical arguments. Thus, it should have deterministic |
|
behavior to maintain state across workers. |
|
:param ts: a list of int timesteps. |
|
:param losses: a list of float losses, one per timestep. |
|
""" |
|
|
|
|
|
class LossSecondMomentResampler(LossAwareSampler): |
|
|
|
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001): |
|
self.diffusion = diffusion |
|
self.history_per_term = history_per_term |
|
self.uniform_prob = uniform_prob |
|
self._loss_history = np.zeros( |
|
[diffusion.num_timesteps, history_per_term], dtype=np.float64) |
|
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int) |
|
|
|
def weights(self): |
|
if not self._warmed_up(): |
|
return np.ones([self.diffusion.num_timesteps], dtype=np.float64) |
|
weights = np.sqrt(np.mean(self._loss_history**2, axis=-1)) |
|
weights /= np.sum(weights) |
|
weights *= 1 - self.uniform_prob |
|
weights += self.uniform_prob / len(weights) |
|
return weights |
|
|
|
def update_with_all_losses(self, ts, losses): |
|
for t, loss in zip(ts, losses): |
|
if self._loss_counts[t] == self.history_per_term: |
|
|
|
self._loss_history[t, :-1] = self._loss_history[t, 1:] |
|
self._loss_history[t, -1] = loss |
|
else: |
|
self._loss_history[t, self._loss_counts[t]] = loss |
|
self._loss_counts[t] += 1 |
|
|
|
def _warmed_up(self): |
|
return (self._loss_counts == self.history_per_term).all() |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
def normal_kl(mean1, logvar1, mean2, logvar2): |
|
""" |
|
Compute the KL divergence between two gaussians. |
|
Shapes are automatically broadcasted, so batches can be compared to |
|
scalars, among other use cases. |
|
""" |
|
tensor = None |
|
for obj in (mean1, logvar1, mean2, logvar2): |
|
if isinstance(obj, th.Tensor): |
|
tensor = obj |
|
break |
|
assert tensor is not None, "at least one argument must be a Tensor" |
|
|
|
|
|
|
|
logvar1, logvar2 = [ |
|
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) |
|
for x in (logvar1, logvar2) |
|
] |
|
|
|
return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + |
|
((mean1 - mean2)**2) * th.exp(-logvar2)) |
|
|
|
|
|
def approx_standard_normal_cdf(x): |
|
""" |
|
A fast approximation of the cumulative distribution function of the |
|
standard normal. |
|
""" |
|
return 0.5 * ( |
|
1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) |
|
|
|
|
|
def discretized_gaussian_log_likelihood(x, *, means, log_scales): |
|
""" |
|
Compute the log-likelihood of a Gaussian distribution discretizing to a |
|
given image. |
|
:param x: the target images. It is assumed that this was uint8 values, |
|
rescaled to the range [-1, 1]. |
|
:param means: the Gaussian mean Tensor. |
|
:param log_scales: the Gaussian log stddev Tensor. |
|
:return: a tensor like x of log probabilities (in nats). |
|
""" |
|
assert x.shape == means.shape == log_scales.shape |
|
centered_x = x - means |
|
inv_stdv = th.exp(-log_scales) |
|
plus_in = inv_stdv * (centered_x + 1.0 / 255.0) |
|
cdf_plus = approx_standard_normal_cdf(plus_in) |
|
min_in = inv_stdv * (centered_x - 1.0 / 255.0) |
|
cdf_min = approx_standard_normal_cdf(min_in) |
|
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) |
|
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) |
|
cdf_delta = cdf_plus - cdf_min |
|
log_probs = th.where( |
|
x < -0.999, |
|
log_cdf_plus, |
|
th.where(x > 0.999, log_one_minus_cdf_min, |
|
th.log(cdf_delta.clamp(min=1e-12))), |
|
) |
|
assert log_probs.shape == x.shape |
|
return log_probs |
|
|
|
|
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): |
|
""" |
|
Get a pre-defined beta schedule for the given name. |
|
|
|
The beta schedule library consists of beta schedules which remain similar |
|
in the limit of num_diffusion_timesteps. |
|
Beta schedules may be added, but should not be removed or changed once |
|
they are committed to maintain backwards compatibility. |
|
""" |
|
if schedule_name == "linear": |
|
|
|
|
|
scale = 1000 / num_diffusion_timesteps |
|
beta_start = scale * 0.0001 |
|
beta_end = scale * 0.02 |
|
return np.linspace(beta_start, |
|
beta_end, |
|
num_diffusion_timesteps, |
|
dtype=np.float64) |
|
elif schedule_name == "cosine": |
|
return betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2)**2, |
|
) |
|
else: |
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, |
|
which defines the cumulative product of (1-beta) over time from t = [0,1]. |
|
|
|
:param num_diffusion_timesteps: the number of betas to produce. |
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and |
|
produces the cumulative product of (1-beta) up to that |
|
part of the diffusion process. |
|
:param max_beta: the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
""" |
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return np.array(betas) |
|
|
|
|
|
class ModelMeanType(enum.Enum): |
|
""" |
|
Which type of output the model predicts. |
|
""" |
|
|
|
PREVIOUS_X = enum.auto() |
|
START_X = enum.auto() |
|
EPSILON = enum.auto() |
|
|
|
|
|
class ModelVarType(enum.Enum): |
|
""" |
|
What is used as the model's output variance. |
|
|
|
The LEARNED_RANGE option has been added to allow the model to predict |
|
values between FIXED_SMALL and FIXED_LARGE, making its job easier. |
|
""" |
|
|
|
LEARNED = enum.auto() |
|
FIXED_SMALL = enum.auto() |
|
FIXED_LARGE = enum.auto() |
|
LEARNED_RANGE = enum.auto() |
|
|
|
|
|
class LossType(enum.Enum): |
|
MSE = enum.auto() |
|
RESCALED_MSE = ( |
|
enum.auto() |
|
) |
|
KL = enum.auto() |
|
RESCALED_KL = enum.auto() |
|
|
|
def is_vb(self): |
|
return self == LossType.KL or self == LossType.RESCALED_KL |
|
|
|
|
|
class GaussianDiffusion: |
|
""" |
|
Utilities for training and sampling diffusion models. |
|
|
|
Ported directly from here, and then adapted over time to further experimentation. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 |
|
|
|
:param betas: a 1-D numpy array of betas for each diffusion timestep, |
|
starting at T and going to 1. |
|
:param model_mean_type: a ModelMeanType determining what the model outputs. |
|
:param model_var_type: a ModelVarType determining how variance is output. |
|
:param loss_type: a LossType determining the loss function to use. |
|
:param rescale_timesteps: if True, pass floating point timesteps into the |
|
model so that they are always scaled like in the |
|
original paper (0 to 1000). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
betas, |
|
model_mean_type, |
|
model_var_type, |
|
loss_type, |
|
rescale_timesteps=False, |
|
): |
|
self.model_mean_type = model_mean_type |
|
self.model_var_type = model_var_type |
|
self.loss_type = loss_type |
|
self.rescale_timesteps = rescale_timesteps |
|
|
|
|
|
betas = np.array(betas, dtype=np.float64) |
|
self.betas = betas |
|
assert len(betas.shape) == 1, "betas must be 1-D" |
|
assert (betas > 0).all() and (betas <= 1).all() |
|
|
|
self.num_timesteps = int(betas.shape[0]) |
|
|
|
alphas = 1.0 - betas |
|
self.alphas_cumprod = np.cumprod(alphas, axis=0) |
|
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) |
|
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) |
|
assert self.alphas_cumprod_prev.shape == (self.num_timesteps, ) |
|
|
|
|
|
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) |
|
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) |
|
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) |
|
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) |
|
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - |
|
1) |
|
|
|
|
|
self.posterior_variance = (betas * (1.0 - self.alphas_cumprod_prev) / |
|
(1.0 - self.alphas_cumprod)) |
|
|
|
|
|
self.posterior_log_variance_clipped = np.log( |
|
np.append(self.posterior_variance[1], self.posterior_variance[1:])) |
|
self.posterior_mean_coef1 = (betas * |
|
np.sqrt(self.alphas_cumprod_prev) / |
|
(1.0 - self.alphas_cumprod)) |
|
self.posterior_mean_coef2 = ((1.0 - self.alphas_cumprod_prev) * |
|
np.sqrt(alphas) / |
|
(1.0 - self.alphas_cumprod)) |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
|
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * |
|
x_start) |
|
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, |
|
x_start.shape) |
|
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, |
|
t, x_start.shape) |
|
return mean, variance, log_variance |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
""" |
|
Diffuse the data for a given number of diffusion steps. |
|
|
|
In other words, sample from q(x_t | x_0). |
|
|
|
:param x_start: the initial data batch. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:param noise: if specified, the split-out normal noise. |
|
:return: A noisy version of x_start. |
|
""" |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
assert noise.shape == x_start.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * |
|
x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, |
|
t, x_start.shape) * noise) |
|
|
|
def q_posterior_mean_variance(self, x_start, x_t, t): |
|
""" |
|
Compute the mean and variance of the diffusion posterior: |
|
|
|
q(x_{t-1} | x_t, x_0) |
|
|
|
""" |
|
assert x_start.shape == x_t.shape |
|
posterior_mean = ( |
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * |
|
x_start + |
|
_extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * |
|
x_t) |
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t, |
|
x_t.shape) |
|
posterior_log_variance_clipped = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape) |
|
assert (posterior_mean.shape[0] == posterior_variance.shape[0] == |
|
posterior_log_variance_clipped.shape[0] == x_start.shape[0]) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None): |
|
""" |
|
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of |
|
the initial x, x_0. |
|
|
|
:param model: the model, which takes a signal and a batch of timesteps |
|
as input. |
|
:param x: the [N x C x ...] tensor at time t. |
|
:param t: a 1-D Tensor of timesteps. |
|
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. Applies before |
|
clip_denoised. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict with the following keys: |
|
- 'mean': the model mean output. |
|
- 'variance': the model variance output. |
|
- 'log_variance': the log of 'variance'. |
|
- 'pred_xstart': the prediction for x_0. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
B, C = x.shape[:2] |
|
assert t.shape == (B, ) |
|
model_output = model(x, self._scale_timesteps(t), **model_kwargs) |
|
|
|
if self.model_var_type in [ |
|
ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE |
|
]: |
|
assert model_output.shape == (B, 2 * C, *x.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
if self.model_var_type == ModelVarType.LEARNED: |
|
model_log_variance = model_var_values |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
min_log = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x.shape) |
|
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) |
|
|
|
frac = (model_var_values + 1) / 2 |
|
model_log_variance = frac * max_log + (1 - frac) * min_log |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
model_variance, model_log_variance = { |
|
|
|
|
|
ModelVarType.FIXED_LARGE: ( |
|
np.append(self.posterior_variance[1], self.betas[1:]), |
|
np.log( |
|
np.append(self.posterior_variance[1], self.betas[1:])), |
|
), |
|
ModelVarType.FIXED_SMALL: ( |
|
self.posterior_variance, |
|
self.posterior_log_variance_clipped, |
|
), |
|
}[self.model_var_type] |
|
model_variance = _extract_into_tensor(model_variance, t, x.shape) |
|
model_log_variance = _extract_into_tensor(model_log_variance, t, |
|
x.shape) |
|
|
|
def process_xstart(x): |
|
if denoised_fn is not None: |
|
x = denoised_fn(x) |
|
if clip_denoised: |
|
return x.clamp(-1, 1) |
|
return x |
|
|
|
if self.model_mean_type == ModelMeanType.PREVIOUS_X: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_xprev(x_t=x, t=t, |
|
xprev=model_output)) |
|
model_mean = model_output |
|
elif self.model_mean_type in [ |
|
ModelMeanType.START_X, ModelMeanType.EPSILON |
|
]: |
|
if self.model_mean_type == ModelMeanType.START_X: |
|
pred_xstart = process_xstart(model_output) |
|
else: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_eps(x_t=x, t=t, |
|
eps=model_output)) |
|
model_mean, _, _ = self.q_posterior_mean_variance( |
|
x_start=pred_xstart, x_t=x, t=t) |
|
else: |
|
raise NotImplementedError(self.model_mean_type) |
|
|
|
assert (model_mean.shape == model_log_variance.shape == |
|
pred_xstart.shape == x.shape) |
|
return { |
|
"mean": model_mean, |
|
"variance": model_variance, |
|
"log_variance": model_log_variance, |
|
"pred_xstart": pred_xstart, |
|
} |
|
|
|
def _predict_xstart_from_eps(self, x_t, t, eps): |
|
assert x_t.shape == eps.shape |
|
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, |
|
x_t.shape) * x_t - |
|
_extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, |
|
x_t.shape) * eps) |
|
|
|
def _predict_xstart_from_xprev(self, x_t, t, xprev): |
|
assert x_t.shape == xprev.shape |
|
return ( |
|
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) |
|
* xprev - _extract_into_tensor( |
|
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, |
|
x_t.shape) * x_t) |
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): |
|
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, |
|
x_t.shape) * x_t - |
|
pred_xstart) / _extract_into_tensor( |
|
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
|
|
def _scale_timesteps(self, t): |
|
if self.rescale_timesteps: |
|
return t.float() * (1000.0 / self.num_timesteps) |
|
return t |
|
|
|
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute the mean for the previous step, given a function cond_fn that |
|
computes the gradient of a conditional log probability with respect to |
|
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to |
|
condition on y. |
|
|
|
This uses the conditioning strategy from Sohl-Dickstein et al. (2015). |
|
""" |
|
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) |
|
new_mean = (p_mean_var["mean"].float() + |
|
p_mean_var["variance"] * gradient.float()) |
|
return new_mean |
|
|
|
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute what the p_mean_variance output would have been, should the |
|
model's score function be conditioned by cond_fn. |
|
|
|
See condition_mean() for details on cond_fn. |
|
|
|
Unlike condition_mean(), this instead uses the conditioning strategy |
|
from Song et al (2020). |
|
""" |
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
|
|
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) |
|
eps = eps - (1 - alpha_bar).sqrt() * cond_fn( |
|
x, self._scale_timesteps(t), **model_kwargs) |
|
|
|
out = p_mean_var.copy() |
|
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) |
|
out["mean"], _, _ = self.q_posterior_mean_variance( |
|
x_start=out["pred_xstart"], x_t=x, t=t) |
|
return out |
|
|
|
def p_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
pre_seq=None, |
|
transl_req=None, |
|
model_kwargs=None, |
|
): |
|
""" |
|
Sample x_{t-1} from the model at the given timestep. |
|
|
|
:param model: the model to sample from. |
|
:param x: the current tensor at x_{t-1}. |
|
:param t: the value of t, starting at 0 for the first diffusion step. |
|
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict containing the following keys: |
|
- 'sample': a random sample from the model. |
|
- 'pred_xstart': a prediction of x_0. |
|
""" |
|
|
|
if pre_seq is not None: |
|
T = pre_seq.shape[1] |
|
noise = th.randn_like(pre_seq) |
|
x_t = self.q_sample(pre_seq, t, noise=noise) |
|
x[:, :T, :] = x_t |
|
|
|
if transl_req is not None: |
|
for item in transl_req: |
|
noise = th.randn(2).type_as(x) |
|
transl = th.Tensor(item[1:]).type_as(x) |
|
x_t = self.q_sample(transl, t, noise=noise) |
|
x[:, :2, item[0]] = x_t |
|
|
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
noise = th.randn_like(x) |
|
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
if cond_fn is not None: |
|
out["mean"] = self.condition_mean(cond_fn, |
|
out, |
|
x, |
|
t, |
|
model_kwargs=model_kwargs) |
|
sample = out["mean"] + nonzero_mask * th.exp( |
|
0.5 * out["log_variance"]) * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def p_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
pre_seq=None, |
|
transl_req=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model. |
|
|
|
:param model: the model module. |
|
:param shape: the shape of the samples, (N, C, H, W). |
|
:param noise: if specified, the noise from the encoder to sample. |
|
Should be of the same shape as `shape`. |
|
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param device: if specified, the device to create the samples on. |
|
If not specified, use a model parameter's device. |
|
:param progress: if True, show a tqdm progress bar. |
|
:return: a non-differentiable batch of samples. |
|
""" |
|
final = None |
|
for sample in self.p_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
pre_seq=pre_seq, |
|
transl_req=transl_req, |
|
progress=progress, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def p_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
pre_seq=None, |
|
transl_req=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model and yield intermediate samples from |
|
each timestep of diffusion. |
|
|
|
Arguments are the same as p_sample_loop(). |
|
Returns a generator over dicts, where each dict is the return value of |
|
p_sample(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.p_sample(model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
pre_seq=pre_seq, |
|
transl_req=transl_req) |
|
yield out |
|
img = out["sample"] |
|
|
|
def ddim_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
pre_seq=None, |
|
gt_motion=None, |
|
context_mask=None, |
|
): |
|
""" |
|
Sample x_{t-1} from the model using DDIM. |
|
|
|
Same usage as p_sample(). |
|
""" |
|
if pre_seq is not None: |
|
T = pre_seq.shape[1] |
|
noise = th.randn_like(pre_seq) |
|
x_t = self.q_sample(pre_seq, t, noise=noise) |
|
x[:, :T, :] = x_t |
|
if context_mask is not None: |
|
B, T = gt_motion.shape[:2] |
|
noise = th.randn_like(gt_motion) * 0 |
|
x_t = self.q_sample(gt_motion, t, noise=noise) |
|
context_mask = context_mask.view(B, T, 1) |
|
x = x_t * context_mask + (1 - context_mask) * x |
|
x = x.float() |
|
|
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
if cond_fn is not None: |
|
out = self.condition_score(cond_fn, |
|
out, |
|
x, |
|
t, |
|
model_kwargs=model_kwargs) |
|
|
|
|
|
|
|
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) |
|
|
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, |
|
x.shape) |
|
sigma = (eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * |
|
th.sqrt(1 - alpha_bar / alpha_bar_prev)) |
|
|
|
noise = th.randn_like(x) |
|
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_prev) + |
|
th.sqrt(1 - alpha_bar_prev - sigma**2) * eps) |
|
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = mean_pred + nonzero_mask * sigma * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_reverse_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
pre_seq=None, |
|
): |
|
""" |
|
Sample x_{t+1} from the model using DDIM reverse ODE. |
|
""" |
|
assert eta == 0.0, "Reverse ODE only for deterministic path" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
|
|
eps = (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) |
|
* x - out["pred_xstart"]) / _extract_into_tensor( |
|
self.sqrt_recipm1_alphas_cumprod, t, x.shape) |
|
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, |
|
x.shape) |
|
|
|
|
|
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_next) + |
|
th.sqrt(1 - alpha_bar_next) * eps) |
|
|
|
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
pre_seq=None, |
|
gt_motion=None, |
|
context_mask=None, |
|
): |
|
""" |
|
Generate samples from the model using DDIM. |
|
|
|
Same usage as p_sample_loop(). |
|
""" |
|
final = None |
|
for sample in self.ddim_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
eta=eta, |
|
pre_seq=pre_seq, |
|
gt_motion=gt_motion, |
|
context_mask=context_mask |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def ddim_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
pre_seq=None, |
|
gt_motion=None, |
|
context_mask=None, |
|
): |
|
""" |
|
Use DDIM to sample from the model and yield intermediate samples from |
|
each timestep of DDIM. |
|
|
|
Same usage as p_sample_loop_progressive(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.ddim_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
eta=eta, |
|
pre_seq=pre_seq, |
|
gt_motion=gt_motion, |
|
context_mask=context_mask |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def _vb_terms_bpd(self, |
|
model, |
|
x_start, |
|
x_t, |
|
t, |
|
clip_denoised=True, |
|
model_kwargs=None): |
|
""" |
|
Get a term for the variational lower-bound. |
|
|
|
The resulting units are bits (rather than nats, as one might expect). |
|
This allows for comparison to other papers. |
|
|
|
:return: a dict with the following keys: |
|
- 'output': a shape [N] tensor of NLLs or KLs. |
|
- 'pred_xstart': the x_0 predictions. |
|
""" |
|
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( |
|
x_start=x_start, x_t=x_t, t=t) |
|
out = self.p_mean_variance(model, |
|
x_t, |
|
t, |
|
clip_denoised=clip_denoised, |
|
model_kwargs=model_kwargs) |
|
kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], |
|
out["log_variance"]) |
|
kl = mean_flat(kl) / np.log(2.0) |
|
|
|
decoder_nll = -discretized_gaussian_log_likelihood( |
|
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]) |
|
assert decoder_nll.shape == x_start.shape |
|
decoder_nll = mean_flat(decoder_nll) / np.log(2.0) |
|
|
|
|
|
|
|
output = th.where((t == 0), decoder_nll, kl) |
|
return {"output": output, "pred_xstart": out["pred_xstart"]} |
|
|
|
def training_losses(self, |
|
model, |
|
x_start, |
|
t, |
|
model_kwargs=None, |
|
noise=None): |
|
""" |
|
Compute training losses for a single timestep. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param t: a batch of timestep indices. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param noise: if specified, the specific Gaussian noise to try to remove. |
|
:return: a dict with the key "loss" containing a tensor of shape [N]. |
|
Some mean or variance settings may also have other keys. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start, t, noise=noise) |
|
|
|
terms = {} |
|
|
|
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: |
|
terms["loss"] = self._vb_terms_bpd( |
|
model=model, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
model_kwargs=model_kwargs, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_KL: |
|
terms["loss"] *= self.num_timesteps |
|
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: |
|
model_output = model(x_t, self._scale_timesteps(t), **model_kwargs) |
|
|
|
if self.model_var_type in [ |
|
ModelVarType.LEARNED, |
|
ModelVarType.LEARNED_RANGE, |
|
]: |
|
B, C = x_t.shape[:2] |
|
assert model_output.shape == (B, C * 2, *x_t.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, |
|
C, |
|
dim=1) |
|
|
|
|
|
frozen_out = th.cat([model_output.detach(), model_var_values], |
|
dim=1) |
|
terms["vb"] = self._vb_terms_bpd( |
|
model=lambda *args, r=frozen_out: r, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_MSE: |
|
|
|
|
|
terms["vb"] *= self.num_timesteps / 1000.0 |
|
|
|
target = { |
|
ModelMeanType.PREVIOUS_X: |
|
self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, |
|
t=t)[0], |
|
ModelMeanType.START_X: |
|
x_start, |
|
ModelMeanType.EPSILON: |
|
noise, |
|
}[self.model_mean_type] |
|
assert model_output.shape == target.shape == x_start.shape |
|
terms["mse"] = mean_flat( |
|
(target - model_output)**2).view(-1, 1).mean(-1) |
|
|
|
|
|
|
|
|
|
terms["target"] = target |
|
terms["pred"] = model_output |
|
else: |
|
raise NotImplementedError(self.loss_type) |
|
|
|
return terms |
|
|
|
def _prior_bpd(self, x_start): |
|
""" |
|
Get the prior KL term for the variational lower-bound, measured in |
|
bits-per-dim. |
|
|
|
This term can't be optimized, as it only depends on the encoder. |
|
|
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:return: a batch of [N] KL values (in bits), one per batch element. |
|
""" |
|
batch_size = x_start.shape[0] |
|
t = th.tensor([self.num_timesteps - 1] * batch_size, |
|
device=x_start.device) |
|
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) |
|
kl_prior = normal_kl(mean1=qt_mean, |
|
logvar1=qt_log_variance, |
|
mean2=0.0, |
|
logvar2=0.0) |
|
return mean_flat(kl_prior) / np.log(2.0) |
|
|
|
def calc_bpd_loop(self, |
|
model, |
|
x_start, |
|
clip_denoised=True, |
|
model_kwargs=None): |
|
""" |
|
Compute the entire variational lower-bound, measured in bits-per-dim, |
|
as well as other related quantities. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param clip_denoised: if True, clip denoised samples. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
|
|
:return: a dict containing the following keys: |
|
- total_bpd: the total variational lower-bound, per batch element. |
|
- prior_bpd: the prior term in the lower-bound. |
|
- vb: an [N x T] tensor of terms in the lower-bound. |
|
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. |
|
- mse: an [N x T] tensor of epsilon MSEs for each timestep. |
|
""" |
|
device = x_start.device |
|
batch_size = x_start.shape[0] |
|
|
|
vb = [] |
|
xstart_mse = [] |
|
mse = [] |
|
for t in list(range(self.num_timesteps))[::-1]: |
|
t_batch = th.tensor([t] * batch_size, device=device) |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) |
|
|
|
with th.no_grad(): |
|
out = self._vb_terms_bpd( |
|
model, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t_batch, |
|
clip_denoised=clip_denoised, |
|
model_kwargs=model_kwargs, |
|
) |
|
vb.append(out["output"]) |
|
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start)**2)) |
|
eps = self._predict_eps_from_xstart(x_t, t_batch, |
|
out["pred_xstart"]) |
|
mse.append(mean_flat((eps - noise)**2)) |
|
|
|
vb = th.stack(vb, dim=1) |
|
xstart_mse = th.stack(xstart_mse, dim=1) |
|
mse = th.stack(mse, dim=1) |
|
|
|
prior_bpd = self._prior_bpd(x_start) |
|
total_bpd = vb.sum(dim=1) + prior_bpd |
|
return { |
|
"total_bpd": total_bpd, |
|
"prior_bpd": prior_bpd, |
|
"vb": vb, |
|
"xstart_mse": xstart_mse, |
|
"mse": mse, |
|
} |
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape): |
|
""" |
|
Extract values from a 1-D numpy array for a batch of indices. |
|
|
|
:param arr: the 1-D numpy array. |
|
:param timesteps: a tensor of indices into the array to extract. |
|
:param broadcast_shape: a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() |
|
while len(res.shape) < len(broadcast_shape): |
|
res = res[..., None] |
|
return res.expand(broadcast_shape) |
|
|
|
|
|
def space_timesteps(num_timesteps, section_counts): |
|
""" |
|
Create a list of timesteps to use from an original diffusion process, |
|
given the number of timesteps we want to take from equally-sized portions |
|
of the original process. |
|
|
|
For example, if there's 300 timesteps and the section counts are [10,15,20] |
|
then the first 100 timesteps are strided to be 10 timesteps, the second 100 |
|
are strided to be 15 timesteps, and the final 100 are strided to be 20. |
|
|
|
:param num_timesteps: the number of diffusion steps in the original |
|
process to divide up. |
|
:param section_counts: either a list of numbers, or a string containing |
|
comma-separated numbers, indicating the step count |
|
per section. As a special case, use "ddimN" where N |
|
is a number of steps to use the striding from the |
|
DDIM paper. |
|
:return: a set of diffusion steps from the original process to use. |
|
""" |
|
if isinstance(section_counts, str): |
|
if section_counts.startswith("ddim"): |
|
desired_count = int(section_counts[len("ddim"):]) |
|
for i in range(1, num_timesteps): |
|
if len(range(0, num_timesteps, i)) == desired_count: |
|
return set(range(0, num_timesteps, i)) |
|
raise ValueError( |
|
f"cannot create exactly {num_timesteps} steps with an integer stride" |
|
) |
|
elif section_counts == "fast27": |
|
|
|
|
|
steps = space_timesteps(num_timesteps, "15,15,8,6,6") |
|
|
|
|
|
steps.remove(num_timesteps - 1) |
|
steps.add(num_timesteps - 3) |
|
return steps |
|
section_counts = [int(x) for x in section_counts.split(",")] |
|
size_per = num_timesteps // len(section_counts) |
|
extra = num_timesteps % len(section_counts) |
|
start_idx = 0 |
|
all_steps = [] |
|
for i, section_count in enumerate(section_counts): |
|
size = size_per + (1 if i < extra else 0) |
|
if size < section_count: |
|
raise ValueError( |
|
f"cannot divide section of {size} steps into {section_count}") |
|
if section_count <= 1: |
|
frac_stride = 1 |
|
else: |
|
frac_stride = (size - 1) / (section_count - 1) |
|
cur_idx = 0.0 |
|
taken_steps = [] |
|
for _ in range(section_count): |
|
taken_steps.append(start_idx + round(cur_idx)) |
|
cur_idx += frac_stride |
|
all_steps += taken_steps |
|
start_idx += size |
|
return set(all_steps) |
|
|
|
|
|
class SpacedDiffusion(GaussianDiffusion): |
|
""" |
|
A diffusion process which can skip steps in a base diffusion process. |
|
|
|
:param use_timesteps: a collection (sequence or set) of timesteps from the |
|
original diffusion process to retain. |
|
:param kwargs: the kwargs to create the base diffusion process. |
|
""" |
|
|
|
def __init__(self, use_timesteps, **kwargs): |
|
self.use_timesteps = set(use_timesteps) |
|
self.timestep_map = [] |
|
self.original_num_steps = len(kwargs["betas"]) |
|
|
|
base_diffusion = GaussianDiffusion(**kwargs) |
|
last_alpha_cumprod = 1.0 |
|
new_betas = [] |
|
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): |
|
if i in self.use_timesteps: |
|
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) |
|
last_alpha_cumprod = alpha_cumprod |
|
self.timestep_map.append(i) |
|
kwargs["betas"] = np.array(new_betas) |
|
super().__init__(**kwargs) |
|
|
|
def p_mean_variance(self, model, *args, **kwargs): |
|
return super().p_mean_variance(self._wrap_model(model), *args, |
|
**kwargs) |
|
|
|
def condition_mean(self, cond_fn, *args, **kwargs): |
|
return super().condition_mean(self._wrap_model(cond_fn), *args, |
|
**kwargs) |
|
|
|
def condition_score(self, cond_fn, *args, **kwargs): |
|
return super().condition_score(self._wrap_model(cond_fn), *args, |
|
**kwargs) |
|
|
|
def _wrap_model(self, model): |
|
if isinstance(model, _WrappedModel): |
|
return model |
|
return _WrappedModel(model, self.timestep_map, self.original_num_steps) |
|
|
|
|
|
class _WrappedModel: |
|
|
|
def __init__(self, model, timestep_map, original_num_steps): |
|
self.model = model |
|
self.timestep_map = timestep_map |
|
self.original_num_steps = original_num_steps |
|
|
|
def __call__(self, x, ts, **kwargs): |
|
map_tensor = th.tensor(self.timestep_map, |
|
device=ts.device, |
|
dtype=ts.dtype) |
|
new_ts = map_tensor[ts] |
|
return self.model(x, new_ts, **kwargs) |
|
|
|
|
|
def build_diffusion(cfg: dict) -> GaussianDiffusion: |
|
"""Build diffusion model based on the configuration. |
|
|
|
Args: |
|
cfg (dict): Configuration dictionary containing the diffusion parameters. |
|
|
|
Returns: |
|
GaussianDiffusion: The built diffusion model. |
|
""" |
|
beta_scheduler = cfg['beta_scheduler'] |
|
diffusion_steps = cfg['diffusion_steps'] |
|
betas = get_named_beta_schedule(beta_scheduler, diffusion_steps) |
|
|
|
model_mean_type = { |
|
'start_x': ModelMeanType.START_X, |
|
'previous_x': ModelMeanType.PREVIOUS_X, |
|
'epsilon': ModelMeanType.EPSILON |
|
}[cfg['model_mean_type']] |
|
|
|
model_var_type = { |
|
'learned': ModelVarType.LEARNED, |
|
'fixed_small': ModelVarType.FIXED_SMALL, |
|
'fixed_large': ModelVarType.FIXED_LARGE, |
|
'learned_range': ModelVarType.LEARNED_RANGE |
|
}[cfg['model_var_type']] |
|
|
|
if cfg.get('respace', None) is not None: |
|
diffusion = SpacedDiffusion( |
|
use_timesteps=space_timesteps(diffusion_steps, cfg['respace']), |
|
betas=betas, |
|
model_mean_type=model_mean_type, |
|
model_var_type=model_var_type, |
|
loss_type=LossType.MSE) |
|
else: |
|
diffusion = GaussianDiffusion( |
|
betas=betas, |
|
model_mean_type=model_mean_type, |
|
model_var_type=model_var_type, |
|
loss_type=LossType.MSE) |
|
|
|
return diffusion |