|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from typing import Optional, Dict, Any |
|
|
|
from ..builder import ATTENTIONS |
|
from ..utils.stylization_block import StylizationBlock |
|
|
|
|
|
@ATTENTIONS.register_module() |
|
class EfficientSelfAttention(nn.Module): |
|
""" |
|
Efficient Self-Attention mechanism for motion generation tasks. |
|
|
|
Args: |
|
latent_dim (int): Dimension of the latent space. |
|
num_heads (int): Number of attention heads. |
|
dropout (float): Dropout probability. |
|
time_embed_dim (Optional[int]): Dimension of the time embedding (optional). |
|
""" |
|
|
|
def __init__(self, |
|
latent_dim: int, |
|
num_heads: int, |
|
dropout: float, |
|
time_embed_dim: Optional[int] = None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.norm = nn.LayerNorm(latent_dim) |
|
self.query = nn.Linear(latent_dim, latent_dim) |
|
self.key = nn.Linear(latent_dim, latent_dim) |
|
self.value = nn.Linear(latent_dim, latent_dim) |
|
self.dropout = nn.Dropout(dropout) |
|
self.time_embed_dim = time_embed_dim |
|
if time_embed_dim is not None: |
|
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) |
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
src_mask: Optional[torch.Tensor] = None, |
|
emb: Optional[torch.Tensor] = None, |
|
**kwargs: Dict[str, Any]) -> torch.Tensor: |
|
""" |
|
Forward pass of Efficient Self-Attention. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor of shape [B, T, D]. |
|
src_mask (Optional[torch.Tensor]): Source mask of shape [B, T] (optional). |
|
emb (Optional[torch.Tensor]): Time embedding tensor of shape [B, D] (optional). |
|
|
|
Returns: |
|
torch.Tensor: Output of the self-attention module. |
|
""" |
|
B, T, D = x.shape |
|
H = self.num_heads |
|
|
|
query = self.query(self.norm(x)) |
|
|
|
if src_mask is None: |
|
key = self.key(self.norm(x)) |
|
else: |
|
key = self.key(self.norm(x)) + (1 - src_mask) * -1000000 |
|
|
|
query = F.softmax(query.view(B, T, H, -1), dim=-1) |
|
key = F.softmax(key.view(B, T, H, -1), dim=1) |
|
|
|
if src_mask is None: |
|
value = self.value(self.norm(x)).view(B, T, H, -1) |
|
else: |
|
value = (self.value(self.norm(x)) * src_mask).view(B, T, H, -1) |
|
|
|
attention = torch.einsum('bnhd,bnhl->bhdl', key, value) |
|
y = torch.einsum('bnhd,bhdl->bnhl', query, attention).reshape(B, T, D) |
|
|
|
if self.time_embed_dim is None: |
|
y = x + y |
|
else: |
|
y = x + self.proj_out(y, emb) |
|
|
|
return y |
|
|
|
|
|
@ATTENTIONS.register_module() |
|
class EfficientCrossAttention(nn.Module): |
|
""" |
|
Efficient Cross-Attention mechanism, attending to text and motion inputs. |
|
|
|
Args: |
|
latent_dim (int): Dimension of the latent space for motion input. |
|
text_latent_dim (int): Dimension of the latent space for text input. |
|
num_heads (int): Number of attention heads. |
|
dropout (float): Dropout probability. |
|
time_embed_dim (int): Dimension of the time embedding. |
|
""" |
|
|
|
def __init__(self, |
|
latent_dim: int, |
|
text_latent_dim: int, |
|
num_heads: int, |
|
dropout: float, |
|
time_embed_dim: Optional[int] = None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.norm = nn.LayerNorm(latent_dim) |
|
self.text_norm = nn.LayerNorm(text_latent_dim) |
|
self.query = nn.Linear(latent_dim, latent_dim) |
|
self.key = nn.Linear(text_latent_dim, latent_dim) |
|
self.value = nn.Linear(text_latent_dim, latent_dim) |
|
self.dropout = nn.Dropout(dropout) |
|
if time_embed_dim is not None: |
|
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) |
|
else: |
|
self.proj_out = None |
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
xf: torch.Tensor, |
|
emb: Optional[torch.Tensor] = None, |
|
cond_type: Optional[torch.Tensor] = None, |
|
**kwargs: Dict[str, Any]) -> torch.Tensor: |
|
""" |
|
Forward pass of Efficient Cross-Attention. |
|
|
|
Args: |
|
x (torch.Tensor): Input motion tensor of shape [B, T, D]. |
|
xf (torch.Tensor): Input text tensor of shape [B, N, L]. |
|
emb (torch.Tensor): Time embedding tensor of shape [B, D]. |
|
cond_type (Optional[torch.Tensor]): Conditioning type tensor (optional). |
|
|
|
Returns: |
|
torch.Tensor: Output of the cross-attention module. |
|
""" |
|
B, T, D = x.shape |
|
N = xf.shape[1] |
|
H = self.num_heads |
|
|
|
query = self.query(self.norm(x)) |
|
|
|
key = self.key(self.text_norm(xf)) |
|
query = F.softmax(query.view(B, T, H, -1), dim=-1) |
|
|
|
if cond_type is None: |
|
key = F.softmax(key.view(B, N, H, -1), dim=1) |
|
value = self.value(self.text_norm(xf)).view(B, N, H, -1) |
|
else: |
|
text_cond_type = ((cond_type % 10) > 0).float().view(B, 1, 1) |
|
text_cond_type = text_cond_type.repeat(1, xf.shape[1], 1) |
|
key = key + (1 - text_cond_type) * -1000000 |
|
key = F.softmax(key.view(B, N, H, -1), dim=1) |
|
value = self.value(self.text_norm(xf) * text_cond_type).view(B, N, H, -1) |
|
|
|
attention = torch.einsum('bnhd,bnhl->bhdl', key, value) |
|
y = torch.einsum('bnhd,bhdl->bnhl', query, attention).reshape(B, T, D) |
|
if self.proj_out is not None: |
|
y = x + self.proj_out(y, emb) |
|
else: |
|
y = x + y |
|
return y |
|
|
|
|
|
@ATTENTIONS.register_module() |
|
class EfficientMixedAttention(nn.Module): |
|
""" |
|
Efficient Mixed Attention, combining text and motion attention. |
|
|
|
Args: |
|
latent_dim (int): Dimension of the latent space for motion input. |
|
text_latent_dim (int): Dimension of the latent space for text input. |
|
num_heads (int): Number of attention heads. |
|
dropout (float): Dropout probability. |
|
time_embed_dim (int): Dimension of the time embedding. |
|
""" |
|
|
|
def __init__(self, |
|
latent_dim: int, |
|
text_latent_dim: int, |
|
num_heads: int, |
|
dropout: float, |
|
time_embed_dim: Optional[int] = None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.norm = nn.LayerNorm(latent_dim) |
|
self.text_norm = nn.LayerNorm(text_latent_dim) |
|
|
|
self.query = nn.Linear(latent_dim, latent_dim) |
|
self.key_text = nn.Linear(text_latent_dim, latent_dim) |
|
self.value_text = nn.Linear(text_latent_dim, latent_dim) |
|
self.key_motion = nn.Linear(latent_dim, latent_dim) |
|
self.value_motion = nn.Linear(latent_dim, latent_dim) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
if time_embed_dim is not None: |
|
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) |
|
else: |
|
self.proj_out = None |
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
xf: torch.Tensor, |
|
src_mask: torch.Tensor, |
|
emb: Optional[torch.Tensor] = None, |
|
cond_type: Optional[torch.Tensor] = None, |
|
**kwargs: Dict[str, Any]) -> torch.Tensor: |
|
""" |
|
Forward pass of Efficient Mixed Attention. |
|
|
|
Args: |
|
x (torch.Tensor): Input motion tensor of shape [B, T, D]. |
|
xf (torch.Tensor): Input text tensor of shape [B, N, L]. |
|
emb (torch.Tensor): Time embedding tensor of shape [B, D]. |
|
src_mask (torch.Tensor): Source mask tensor of shape [B, T]. |
|
cond_type (torch.Tensor): Conditioning type tensor. |
|
|
|
Returns: |
|
torch.Tensor: Output of the mixed attention module. |
|
""" |
|
B, T, D = x.shape |
|
N = xf.shape[1] + x.shape[1] |
|
H = self.num_heads |
|
|
|
query = self.query(self.norm(x)).view(B, T, H, -1) |
|
|
|
text_cond_type = (cond_type % 10 > 0).float() |
|
src_mask = src_mask.view(B, T, 1) |
|
|
|
key_text = self.key_text(self.text_norm(xf)) |
|
key_text = key_text + (1 - text_cond_type) * -1000000 |
|
key_motion = self.key_motion(self.norm(x)) + (1 - src_mask) * -1000000 |
|
key = torch.cat((key_text, key_motion), dim=1) |
|
|
|
query = F.softmax(query.view(B, T, H, -1), dim=-1) |
|
key = self.dropout(F.softmax(key.view(B, N, H, -1), dim=1)) |
|
|
|
value = torch.cat( |
|
(self.value_text(self.text_norm(xf)) * text_cond_type, self.value_motion(self.norm(x)) * src_mask), |
|
dim=1 |
|
).view(B, N, H, -1) |
|
|
|
attention = torch.einsum('bnhd,bnhl->bhdl', key, value) |
|
y = torch.einsum('bnhd,bhdl->bnhl', query, attention).reshape(B, T, D) |
|
|
|
if self.proj_out is not None: |
|
y = x + self.proj_out(y, emb) |
|
else: |
|
y = x + y |
|
return y |
|
|