File size: 10,880 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from torch import nn
from typing import Optional

from mogen.models.utils.misc import zero_module
from mogen.models.utils.position_encoding import timestep_embedding
from mogen.models.utils.stylization_block import StylizationBlock

from ..builder import SUBMODULES, build_attention
from .remodiffuse import ReMoDiffuseTransformer


class FFN(nn.Module):
    """
    A feed-forward network (FFN) with optional stylization block.
    
    Args:
        latent_dim (int): The dimension of the input and output latent space.
        ffn_dim (int): The dimension of the hidden feed-forward network.
        dropout (float): The dropout rate to apply after activation.
        time_embed_dim (int): The dimension of the time embedding.
    """
    def __init__(self, latent_dim: int, ffn_dim: int, dropout: float, time_embed_dim: int):
        super().__init__()
        self.latent_dim = latent_dim
        self.linear1 = nn.Linear(latent_dim, ffn_dim)
        self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim))
        self.activation = nn.GELU()
        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)

    def forward(self, x: torch.Tensor, emb: torch.Tensor, **kwargs) -> torch.Tensor:
        """
        Forward pass of the FFN layer.
        
        Args:
            x (torch.Tensor): Input tensor of shape (B, T, latent_dim*2).
            emb (torch.Tensor): Time embedding tensor.
        
        Returns:
            torch.Tensor: Output tensor after FFN and stylization block.
        """
        x1 = x[:, :, :self.latent_dim].contiguous()
        x2 = x[:, :, self.latent_dim:].contiguous()
        y1 = self.linear2(self.dropout(self.activation(self.linear1(x1))))
        y1 = x1 + self.proj_out(y1, emb)
        y2 = self.linear2(self.dropout(self.activation(self.linear1(x2))))
        y2 = x2 + self.proj_out(y2, emb)
        y = torch.cat((y1, y2), dim=-1)
        return y


class DecoderLayer(nn.Module):
    """
    A single decoder layer consisting of a cross-attention block and a feed-forward network (FFN).
    
    Args:
        ca_block_cfg (Optional[dict]): Configuration for the cross-attention block.
        ffn_cfg (Optional[dict]): Configuration for the feed-forward network.
    """
    def __init__(self, ca_block_cfg: Optional[dict] = None, ffn_cfg: Optional[dict] = None):
        super().__init__()
        self.ca_block = build_attention(ca_block_cfg)
        self.ffn = FFN(**ffn_cfg)

    def forward(self, **kwargs) -> torch.Tensor:
        """
        Forward pass of the decoder layer.
        
        Args:
            **kwargs: Arguments passed to the cross-attention and FFN layers.
        
        Returns:
            torch.Tensor: Output tensor after passing through the layer.
        """
        if self.ca_block is not None:
            x = self.ca_block(**kwargs)
            kwargs.update({'x': x})
        if self.ffn is not None:
            x = self.ffn(**kwargs)
        return x


@SUBMODULES.register_module()
class MoMatMoGenTransformer(ReMoDiffuseTransformer):
    """
    MoMatMoGenTransformer is a motion generation transformer model, which uses ReMoDiffuse as a base.
    
    Args:
        ReMoDiffuseTransformer: Base transformer class.
    """
    def build_temporal_blocks(self, sa_block_cfg: Optional[dict], ca_block_cfg: Optional[dict], ffn_cfg: Optional[dict]):
        """
        Build temporal decoder blocks using the provided configurations.
        
        Args:
            sa_block_cfg (Optional[dict]): Self-attention block configuration.
            ca_block_cfg (Optional[dict]): Cross-attention block configuration.
            ffn_cfg (Optional[dict]): Feed-forward network configuration.
        """
        self.temporal_decoder_blocks = nn.ModuleList()
        for i in range(self.num_layers):
            self.temporal_decoder_blocks.append(
                DecoderLayer(ca_block_cfg=ca_block_cfg, ffn_cfg=ffn_cfg))

    def forward(self,
                motion: torch.Tensor,
                timesteps: torch.Tensor,
                motion_mask: Optional[torch.Tensor] = None,
                **kwargs) -> torch.Tensor:
        """
        Forward pass for motion generation.
        
        Args:
            motion (torch.Tensor): Input motion tensor of shape (B, T, D).
            timesteps (torch.Tensor): Timestep embeddings.
            motion_mask (Optional[torch.Tensor]): Motion mask, if any.
        
        Returns:
            torch.Tensor: Output tensor after processing the motion data.
        """
        T = motion.shape[1]
        conditions = self.get_precompute_condition(device=motion.device,
                                                   **kwargs)
        if len(motion_mask.shape) == 2:
            src_mask = motion_mask.clone().unsqueeze(-1)
        else:
            src_mask = motion_mask.clone()

        if self.time_embedding_type == 'sinusoidal':
            emb = self.time_embed(
                timestep_embedding(timesteps, self.latent_dim))
        else:
            emb = self.time_embed(self.time_tokens(timesteps))

        if self.use_text_proj:
            emb = emb + conditions['xf_proj']

        motion1 = motion[:, :, :self.input_feats].contiguous()
        motion2 = motion[:, :, self.input_feats:].contiguous()
        h1 = self.joint_embed(motion1)
        h2 = self.joint_embed(motion2)
        if self.use_pos_embedding:
            h1 = h1 + self.sequence_embedding.unsqueeze(0)[:, :T, :]
            h2 = h2 + self.sequence_embedding.unsqueeze(0)[:, :T, :]
        h = torch.cat((h1, h2), dim=-1)

        if self.training:
            output = self.forward_train(h=h,
                                        src_mask=src_mask,
                                        emb=emb,
                                        timesteps=timesteps,
                                        **conditions)
        else:
            output = self.forward_test(h=h,
                                       src_mask=src_mask,
                                       emb=emb,
                                       timesteps=timesteps,
                                       **conditions)
        if self.use_residual_connection:
            output = motion + output
        return output

    def forward_train(self,
                      h: Optional[torch.Tensor] = None,
                      src_mask: Optional[torch.Tensor] = None,
                      emb: Optional[torch.Tensor] = None,
                      xf_out: Optional[torch.Tensor] = None,
                      re_dict: Optional[dict] = None,
                      **kwargs) -> torch.Tensor:
        """
        Training forward pass for the motion generation transformer.
        
        Args:
            h (Optional[torch.Tensor]): Input tensor.
            src_mask (Optional[torch.Tensor]): Source mask.
            emb (Optional[torch.Tensor]): Embedding tensor.
            xf_out (Optional[torch.Tensor]): Output of the cross-attention block.
            re_dict (Optional[dict]): Dictionary for recurrent features.
        
        Returns:
            torch.Tensor: Output tensor after processing.
        """
        B, T = h.shape[0], h.shape[1]
        cond_type = torch.randint(0, 100, size=(B, 1, 1)).to(h.device)
        for module in self.temporal_decoder_blocks:
            h = module(x=h,
                       xf=xf_out,
                       emb=emb,
                       src_mask=src_mask,
                       cond_type=cond_type,
                       re_dict=re_dict)

        out1 = self.out(h[:, :, :self.latent_dim].contiguous())
        out1 = out1.view(B, T, -1).contiguous()
        out2 = self.out(h[:, :, self.latent_dim:].contiguous())
        out2 = out2.view(B, T, -1).contiguous()
        output = torch.cat((out1, out2), dim=-1)
        return output

    def forward_test(self,
                     h: Optional[torch.Tensor] = None,
                     src_mask: Optional[torch.Tensor] = None,
                     emb: Optional[torch.Tensor] = None,
                     xf_out: Optional[torch.Tensor] = None,
                     re_dict: Optional[dict] = None,
                     timesteps: Optional[torch.Tensor] = None,
                     **kwargs) -> torch.Tensor:
        """
        Testing forward pass for the motion generation transformer.
        
        Args:
            h (Optional[torch.Tensor]): Input tensor.
            src_mask (Optional[torch.Tensor]): Source mask.
            emb (Optional[torch.Tensor]): Embedding tensor.
            xf_out (Optional[torch.Tensor]): Output of the cross-attention block.
            re_dict (Optional[dict]): Dictionary for recurrent features.
            timesteps (Optional[torch.Tensor]): Timestep embeddings.
        
        Returns:
            torch.Tensor: Output tensor after processing.
        """
        B, T = h.shape[0], h.shape[1]
        both_cond_type = torch.zeros(B, 1, 1).to(h.device) + 99
        text_cond_type = torch.zeros(B, 1, 1).to(h.device) + 1
        retr_cond_type = torch.zeros(B, 1, 1).to(h.device) + 10
        none_cond_type = torch.zeros(B, 1, 1).to(h.device)

        all_cond_type = torch.cat(
            (both_cond_type, text_cond_type, retr_cond_type, none_cond_type),
            dim=0)
        h = h.repeat(4, 1, 1)
        xf_out = xf_out.repeat(4, 1, 1)
        emb = emb.repeat(4, 1)
        src_mask = src_mask.repeat(4, 1, 1)
        if re_dict['re_motion'].shape[0] != h.shape[0]:
            re_dict['re_motion'] = re_dict['re_motion'].repeat(4, 1, 1, 1)
            re_dict['re_text'] = re_dict['re_text'].repeat(4, 1, 1, 1)
            re_dict['re_mask'] = re_dict['re_mask'].repeat(4, 1, 1)

        for module in self.temporal_decoder_blocks:
            h = module(x=h,
                       xf=xf_out,
                       emb=emb,
                       src_mask=src_mask,
                       cond_type=all_cond_type,
                       re_dict=re_dict)

        out1 = self.out(h[:, :, :self.latent_dim].contiguous())
        out1 = out1.view(4 * B, T, -1).contiguous()
        out2 = self.out(h[:, :, self.latent_dim:].contiguous())
        out2 = out2.view(4 * B, T, -1).contiguous()
        out = torch.cat((out1, out2), dim=-1)
        out_both = out[:B].contiguous()
        out_text = out[B:2 * B].contiguous()
        out_retr = out[2 * B:3 * B].contiguous()
        out_none = out[3 * B:].contiguous()

        coef_cfg = self.scale_func(int(timesteps[0]))
        both_coef = coef_cfg['both_coef']
        text_coef = coef_cfg['text_coef']
        retr_coef = coef_cfg['retr_coef']
        none_coef = coef_cfg['none_coef']
        output = out_both * both_coef
        output += out_text * text_coef
        output += out_retr * retr_coef
        output += out_none * none_coef
        return output