File size: 21,971 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import numpy as np
import torch
from torch import nn

from typing import Optional, Dict, List

from mogen.models.utils.misc import zero_module

from ..builder import SUBMODULES, build_attention
from ..utils.stylization_block import StylizationBlock
from .motion_transformer import MotionTransformer


def get_kit_slice(idx: int) -> List[int]:
    """
    Get the slice indices for the KIT skeleton.

    Args:
        idx (int): The index of the skeleton part.

    Returns:
        List[int]: Slice indices for the specified skeleton part.
    """
    if idx == 0:
        return [0, 1, 2, 3, 184, 185, 186, 247, 248, 249, 250]
    return [
        4 + (idx - 1) * 3,
        4 + (idx - 1) * 3 + 1,
        4 + (idx - 1) * 3 + 2,
        64 + (idx - 1) * 6,
        64 + (idx - 1) * 6 + 1,
        64 + (idx - 1) * 6 + 2,
        64 + (idx - 1) * 6 + 3,
        64 + (idx - 1) * 6 + 4,
        64 + (idx - 1) * 6 + 5,
        184 + idx * 3,
        184 + idx * 3 + 1,
        184 + idx * 3 + 2,
    ]


def get_t2m_slice(idx: int) -> List[int]:
    """
    Get the slice indices for the T2M skeleton.

    Args:
        idx (int): The index of the skeleton part.

    Returns:
        List[int]: Slice indices for the specified skeleton part.
    """
    if idx == 0:
        return [0, 1, 2, 3, 193, 194, 195, 259, 260, 261, 262]
    return [
        4 + (idx - 1) * 3,
        4 + (idx - 1) * 3 + 1,
        4 + (idx - 1) * 3 + 2,
        67 + (idx - 1) * 6,
        67 + (idx - 1) * 6 + 1,
        67 + (idx - 1) * 6 + 2,
        67 + (idx - 1) * 6 + 3,
        67 + (idx - 1) * 6 + 4,
        67 + (idx - 1) * 6 + 5,
        193 + idx * 3,
        193 + idx * 3 + 1,
        193 + idx * 3 + 2,
    ]


def get_part_slice(idx_list: List[int], func) -> List[int]:
    """
    Get the slice indices for a list of indices.

    Args:
        idx_list (List[int]): List of part indices.
        func (Callable): Function to get slice indices for each part.

    Returns:
        List[int]: Concatenated list of slice indices for the parts.
    """
    result = []
    for idx in idx_list:
        result.extend(func(idx))
    return result


class PoseEncoder(nn.Module):
    """
    Pose Encoder to process motion data and encode body parts into latent representations.
    """

    def __init__(self,
                 dataset_name: str = "human_ml3d",
                 latent_dim: int = 64,
                 input_dim: int = 263):
        super().__init__()
        self.dataset_name = dataset_name
        if dataset_name == "human_ml3d":
            func = get_t2m_slice
            self.head_slice = get_part_slice([12, 15], func)
            self.stem_slice = get_part_slice([3, 6, 9], func)
            self.larm_slice = get_part_slice([14, 17, 19, 21], func)
            self.rarm_slice = get_part_slice([13, 16, 18, 20], func)
            self.lleg_slice = get_part_slice([2, 5, 8, 11], func)
            self.rleg_slice = get_part_slice([1, 4, 7, 10], func)
            self.root_slice = get_part_slice([0], func)
            self.body_slice = get_part_slice([_ for _ in range(22)], func)
        elif dataset_name == "kit_ml":
            func = get_kit_slice
            self.head_slice = get_part_slice([4], func)
            self.stem_slice = get_part_slice([1, 2, 3], func)
            self.larm_slice = get_part_slice([8, 9, 10], func)
            self.rarm_slice = get_part_slice([5, 6, 7], func)
            self.lleg_slice = get_part_slice([16, 17, 18, 19, 20], func)
            self.rleg_slice = get_part_slice([11, 12, 13, 14, 15], func)
            self.root_slice = get_part_slice([0], func)
            self.body_slice = get_part_slice([_ for _ in range(21)], func)
        else:
            raise ValueError()

        self.head_embed = nn.Linear(len(self.head_slice), latent_dim)
        self.stem_embed = nn.Linear(len(self.stem_slice), latent_dim)
        self.larm_embed = nn.Linear(len(self.larm_slice), latent_dim)
        self.rarm_embed = nn.Linear(len(self.rarm_slice), latent_dim)
        self.lleg_embed = nn.Linear(len(self.lleg_slice), latent_dim)
        self.rleg_embed = nn.Linear(len(self.rleg_slice), latent_dim)
        self.root_embed = nn.Linear(len(self.root_slice), latent_dim)
        self.body_embed = nn.Linear(len(self.body_slice), latent_dim)

        assert len(set(self.body_slice)) == input_dim

    def forward(self, motion: torch.Tensor) -> torch.Tensor:
        """
        Forward pass for encoding the motion into body part embeddings.

        Args:
            motion (torch.Tensor): Input motion tensor of shape (B, T, D).

        Returns:
            torch.Tensor: Concatenated latent representations of body parts.
        """
        head_feat = self.head_embed(motion[:, :, self.head_slice].contiguous())
        stem_feat = self.stem_embed(motion[:, :, self.stem_slice].contiguous())
        larm_feat = self.larm_embed(motion[:, :, self.larm_slice].contiguous())
        rarm_feat = self.rarm_embed(motion[:, :, self.rarm_slice].contiguous())
        lleg_feat = self.lleg_embed(motion[:, :, self.lleg_slice].contiguous())
        rleg_feat = self.rleg_embed(motion[:, :, self.rleg_slice].contiguous())
        root_feat = self.root_embed(motion[:, :, self.root_slice].contiguous())
        body_feat = self.body_embed(motion[:, :, self.body_slice].contiguous())
        feat = torch.cat((head_feat, stem_feat, larm_feat, rarm_feat,
                          lleg_feat, rleg_feat, root_feat, body_feat),
                         dim=-1)
        return feat


class PoseDecoder(nn.Module):
    """
    Pose Decoder to decode the latent representations of body parts back into motion.
    """

    def __init__(self,
                 dataset_name: str = "human_ml3d",
                 latent_dim: int = 64,
                 output_dim: int = 263):
        super().__init__()
        self.dataset_name = dataset_name
        self.latent_dim = latent_dim
        self.output_dim = output_dim
        if dataset_name == "human_ml3d":
            func = get_t2m_slice
            self.head_slice = get_part_slice([12, 15], func)
            self.stem_slice = get_part_slice([3, 6, 9], func)
            self.larm_slice = get_part_slice([14, 17, 19, 21], func)
            self.rarm_slice = get_part_slice([13, 16, 18, 20], func)
            self.lleg_slice = get_part_slice([2, 5, 8, 11], func)
            self.rleg_slice = get_part_slice([1, 4, 7, 10], func)
            self.root_slice = get_part_slice([0], func)
            self.body_slice = get_part_slice([_ for _ in range(22)], func)
        elif dataset_name == "kit_ml":
            func = get_kit_slice
            self.head_slice = get_part_slice([4], func)
            self.stem_slice = get_part_slice([1, 2, 3], func)
            self.larm_slice = get_part_slice([8, 9, 10], func)
            self.rarm_slice = get_part_slice([5, 6, 7], func)
            self.lleg_slice = get_part_slice([16, 17, 18, 19, 20], func)
            self.rleg_slice = get_part_slice([11, 12, 13, 14, 15], func)
            self.root_slice = get_part_slice([0], func)
            self.body_slice = get_part_slice([_ for _ in range(21)], func)
        else:
            raise ValueError()

        self.head_out = nn.Linear(latent_dim, len(self.head_slice))
        self.stem_out = nn.Linear(latent_dim, len(self.stem_slice))
        self.larm_out = nn.Linear(latent_dim, len(self.larm_slice))
        self.rarm_out = nn.Linear(latent_dim, len(self.rarm_slice))
        self.lleg_out = nn.Linear(latent_dim, len(self.lleg_slice))
        self.rleg_out = nn.Linear(latent_dim, len(self.rleg_slice))
        self.root_out = nn.Linear(latent_dim, len(self.root_slice))
        self.body_out = nn.Linear(latent_dim, len(self.body_slice))

    def forward(self, motion: torch.Tensor) -> torch.Tensor:
        """
        Forward pass to decode the latent body part features back to motion.

        Args:
            motion (torch.Tensor): Input tensor of shape (B, T, D).

        Returns:
            torch.Tensor: Output motion tensor of shape (B, T, output_dim).
        """
        B, T = motion.shape[:2]
        D = self.latent_dim
        head_feat = self.head_out(motion[:, :, :D].contiguous())
        stem_feat = self.stem_out(motion[:, :, D:2 * D].contiguous())
        larm_feat = self.larm_out(motion[:, :, 2 * D:3 * D].contiguous())
        rarm_feat = self.rarm_out(motion[:, :, 3 * D:4 * D].contiguous())
        lleg_feat = self.lleg_out(motion[:, :, 4 * D:5 * D].contiguous())
        rleg_feat = self.rleg_out(motion[:, :, 5 * D:6 * D].contiguous())
        root_feat = self.root_out(motion[:, :, 6 * D:7 * D].contiguous())
        body_feat = self.body_out(motion[:, :, 7 * D:].contiguous())
        output = torch.zeros(B, T, self.output_dim).type_as(motion)
        output[:, :, self.head_slice] = head_feat
        output[:, :, self.stem_slice] = stem_feat
        output[:, :, self.larm_slice] = larm_feat
        output[:, :, self.rarm_slice] = rarm_feat
        output[:, :, self.lleg_slice] = lleg_feat
        output[:, :, self.rleg_slice] = rleg_feat
        output[:, :, self.root_slice] = root_feat
        output = (output + body_feat) / 2.0
        return output


class SFFN(nn.Module):
    """
    A Stylized Feed-Forward Network (SFFN) module for transformer layers.

    Args:
        latent_dim (int): Dimensionality of the input.
        ffn_dim (int): Dimensionality of the feed-forward layer.
        dropout (float): Dropout probability.
        time_embed_dim (int): Dimensionality of the time embedding.
        norm (str): Normalization type ('None').
        activation (str): Activation function ('GELU').
    """

    def __init__(self,
                 latent_dim: int,
                 ffn_dim: int,
                 dropout: float,
                 time_embed_dim: int,
                 norm: str = "None",
                 activation: str = "GELU",
                 **kwargs):
        super().__init__()
        self.linear1_list = nn.ModuleList()
        self.linear2_list = nn.ModuleList()

        channel_mul = 1
        if activation == "GELU":
            self.activation = nn.GELU()

        for i in range(8):
            self.linear1_list.append(nn.Linear(latent_dim, ffn_dim * channel_mul))
            self.linear2_list.append(nn.Linear(ffn_dim, latent_dim))

        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim * 8, time_embed_dim, dropout)

        if norm == "None":
            self.norm = nn.Identity()

    def forward(self, x: torch.Tensor, emb: torch.Tensor, **kwargs) -> torch.Tensor:
        """
        Forward pass of the SFFN layer.

        Args:
            x (torch.Tensor): Input tensor of shape (B, T, D).
            emb (torch.Tensor): Embedding tensor for time step modulation.

        Returns:
            torch.Tensor: Output tensor of shape (B, T, D).
        """
        B, T, D = x.shape
        x = self.norm(x)
        x = x.reshape(B, T, 8, -1)
        output = []
        for i in range(8):
            feat = x[:, :, i].contiguous()
            feat = self.dropout(self.activation(self.linear1_list[i](feat)))
            feat = self.linear2_list[i](feat)
            output.append(feat)
        y = torch.cat(output, dim=-1)
        y = x.reshape(B, T, D) + self.proj_out(y, emb)
        return y


class DecoderLayer(nn.Module):
    """
    A transformer decoder layer with cross-attention and feed-forward network (SFFN).
    
    Args:
        ca_block_cfg (Optional[Dict]): Configuration for the cross-attention block.
        ffn_cfg (Optional[Dict]): Configuration for the feed-forward network (SFFN).
    """

    def __init__(self, ca_block_cfg: Optional[Dict] = None, ffn_cfg: Optional[Dict] = None):
        super().__init__()
        self.ca_block = build_attention(ca_block_cfg)
        self.ffn = SFFN(**ffn_cfg)

    def forward(self, **kwargs) -> torch.Tensor:
        """
        Forward pass of the decoder layer.

        Args:
            kwargs: Keyword arguments for attention and feed-forward layers.

        Returns:
            torch.Tensor: Output of the decoder layer.
        """
        if self.ca_block is not None:
            x = self.ca_block(**kwargs)
            kwargs.update({'x': x})
        if self.ffn is not None:
            x = self.ffn(**kwargs)
        return x


@SUBMODULES.register_module()
class FineMoGenTransformer(MotionTransformer):
    """
    A transformer model for motion generation using fine-grained control with Diffusion.

    Args:
        scale_func_cfg (Optional[Dict]): Configuration for scaling function.
        pose_encoder_cfg (Optional[Dict]): Configuration for the PoseEncoder.
        pose_decoder_cfg (Optional[Dict]): Configuration for the PoseDecoder.
        moe_route_loss_weight (float): Weight for the Mixture of Experts (MoE) routing loss.
        template_kl_loss_weight (float): Weight for the KL loss in template generation.
        fine_mode (bool): Whether to enable fine mode for control over body parts.
    """

    def __init__(self,
                 scale_func_cfg: Optional[Dict] = None,
                 pose_encoder_cfg: Optional[Dict] = None,
                 pose_decoder_cfg: Optional[Dict] = None,
                 moe_route_loss_weight: float = 1.0,
                 template_kl_loss_weight: float = 0.0001,
                 fine_mode: bool = False,
                 **kwargs):
        super().__init__(**kwargs)
        self.scale_func_cfg = scale_func_cfg
        self.joint_embed = PoseEncoder(**pose_encoder_cfg)
        self.out = zero_module(PoseDecoder(**pose_decoder_cfg))
        self.moe_route_loss_weight = moe_route_loss_weight
        self.template_kl_loss_weight = template_kl_loss_weight
        self.mean = np.load("data/datasets/kit_ml/mean.npy")
        self.std = np.load("data/datasets/kit_ml/std.npy")
        self.fine_mode = fine_mode

    def build_temporal_blocks(self, sa_block_cfg: Optional[Dict], ca_block_cfg: Optional[Dict], ffn_cfg: Optional[Dict]):
        """
        Build temporal decoder blocks for the model.

        Args:
            sa_block_cfg (Optional[Dict]): Configuration for self-attention blocks.
            ca_block_cfg (Optional[Dict]): Configuration for cross-attention blocks.
            ffn_cfg (Optional[Dict]): Configuration for feed-forward networks.
        """
        self.temporal_decoder_blocks = nn.ModuleList()
        for i in range(self.num_layers):
            if isinstance(ffn_cfg, list):
                ffn_cfg_block = ffn_cfg[i]
            else:
                ffn_cfg_block = ffn_cfg
            self.temporal_decoder_blocks.append(DecoderLayer(ca_block_cfg=ca_block_cfg, ffn_cfg=ffn_cfg_block))

    def scale_func(self, timestep: int) -> Dict[str, float]:
        """
        Scaling function for text and none coefficient based on timestep.

        Args:
            timestep (int): Current diffusion timestep.

        Returns:
            Dict[str, float]: Scaling factors for text and non-text conditioning.
        """
        scale = self.scale_func_cfg['scale']
        w = (1 - (1000 - timestep) / 1000) * scale + 1
        return {'text_coef': w, 'none_coef': 1 - w}

    def aux_loss(self) -> Dict[str, torch.Tensor]:
        """
        Auxiliary loss computation for MoE routing and KL loss.

        Returns:
            Dict[str, torch.Tensor]: Computed auxiliary losses.
        """
        aux_loss = 0
        kl_loss = 0
        for module in self.temporal_decoder_blocks:
            if hasattr(module.ca_block, 'aux_loss'):
                aux_loss = aux_loss + module.ca_block.aux_loss
            if hasattr(module.ca_block, 'kl_loss'):
                kl_loss = kl_loss + module.ca_block.kl_loss
        losses = {}
        if aux_loss > 0:
            losses['moe_route_loss'] = aux_loss * self.moe_route_loss_weight
        if kl_loss > 0:
            losses['template_kl_loss'] = kl_loss * self.template_kl_loss_weight
        return losses

    def get_precompute_condition(self,
                                 text: Optional[str] = None,
                                 motion_length: Optional[torch.Tensor] = None,
                                 xf_out: Optional[torch.Tensor] = None,
                                 re_dict: Optional[Dict] = None,
                                 device: Optional[torch.device] = None,
                                 sample_idx: Optional[int] = None,
                                 clip_feat: Optional[torch.Tensor] = None,
                                 **kwargs) -> Dict[str, torch.Tensor]:
        """
        Precompute conditioning features for text or other modalities.

        Args:
            text (Optional[str]): Text input for conditioning.
            motion_length (Optional[torch.Tensor]): Length of the motion sequence.
            xf_out (Optional[torch.Tensor]): Precomputed text features.
            re_dict (Optional[Dict]): Additional features dictionary.
            device (Optional[torch.device]): Target device for the model.
            sample_idx (Optional[int]): Sample index for specific conditioning.
            clip_feat (Optional[torch.Tensor]): Precomputed CLIP features.

        Returns:
            Dict[str, torch.Tensor]: Precomputed conditioning features.
        """
        if xf_out is None:
            xf_out = self.encode_text(text, clip_feat, device)
        output = {'xf_out': xf_out}
        return output

    def post_process(self, motion: torch.Tensor) -> torch.Tensor:
        """
        Post-process motion data by unnormalizing if necessary.

        Args:
            motion (torch.Tensor): Input motion data.

        Returns:
            torch.Tensor: Processed motion data.
        """
        if self.post_process_cfg is not None:
            if self.post_process_cfg.get("unnormalized_infer", False):
                mean = torch.from_numpy(np.load(self.post_process_cfg['mean_path'])).type_as(motion)
                std = torch.from_numpy(np.load(self.post_process_cfg['std_path'])).type_as(motion)
                motion = motion * std + mean
        return motion

    def forward_train(self,
                      h: torch.Tensor,
                      src_mask: Optional[torch.Tensor] = None,
                      emb: Optional[torch.Tensor] = None,
                      xf_out: Optional[torch.Tensor] = None,
                      motion_length: Optional[torch.Tensor] = None,
                      num_intervals: int = 1,
                      **kwargs) -> torch.Tensor:
        """
        Forward pass during training.

        Args:
            h (torch.Tensor): Input tensor of shape (B, T, D).
            src_mask (Optional[torch.Tensor]): Source mask tensor.
            emb (Optional[torch.Tensor]): Time embedding tensor.
            xf_out (Optional[torch.Tensor]): Precomputed text features.
            motion_length (Optional[torch.Tensor]): Lengths of motion sequences.
            num_intervals (int): Number of intervals for processing.

        Returns:
            torch.Tensor: Output tensor of shape (B, T, D).
        """
        B, T = h.shape[0], h.shape[1]
        cond_type = torch.randint(0, 100, size=(B, 1, 1)).repeat(1, 8, 1).to(h.device) if self.fine_mode else torch.randint(0, 100, size=(B, 1, 1)).to(h.device)
        for module in self.temporal_decoder_blocks:
            h = module(x=h,
                       xf=xf_out,
                       emb=emb,
                       src_mask=src_mask,
                       cond_type=cond_type,
                       motion_length=motion_length,
                       num_intervals=num_intervals)

        output = self.out(h).view(B, T, -1).contiguous()
        return output

    def forward_test(self,
                     h: torch.Tensor,
                     src_mask: Optional[torch.Tensor] = None,
                     emb: Optional[torch.Tensor] = None,
                     xf_out: Optional[torch.Tensor] = None,
                     timesteps: Optional[torch.Tensor] = None,
                     motion_length: Optional[torch.Tensor] = None,
                     num_intervals: int = 1,
                     **kwargs) -> torch.Tensor:
        """
        Forward pass during inference.

        Args:
            h (torch.Tensor): Input tensor of shape (B, T, D).
            src_mask (Optional[torch.Tensor]): Source mask tensor.
            emb (Optional[torch.Tensor]): Time embedding tensor.
            xf_out (Optional[torch.Tensor]): Precomputed text features.
            timesteps (Optional[torch.Tensor]): Diffusion timesteps.
            motion_length (Optional[torch.Tensor]): Lengths of motion sequences.
            num_intervals (int): Number of intervals for processing.

        Returns:
            torch.Tensor: Output tensor of shape (B, T, D).
        """
        B, T = h.shape[0], h.shape[1]
        text_cond_type = torch.zeros(B, 1, 1).to(h.device) + 1
        none_cond_type = torch.zeros(B, 1, 1).to(h.device)

        all_cond_type = torch.cat((text_cond_type, none_cond_type), dim=0)
        h = h.repeat(2, 1, 1)
        xf_out = xf_out.repeat(2, 1, 1)
        emb = emb.repeat(2, 1)
        src_mask = src_mask.repeat(2, 1, 1)
        motion_length = motion_length.repeat(2, 1)
        for module in self.temporal_decoder_blocks:
            h = module(x=h,
                       xf=xf_out,
                       emb=emb,
                       src_mask=src_mask,
                       cond_type=all_cond_type,
                       motion_length=motion_length,
                       num_intervals=num_intervals)
        out = self.out(h).view(2 * B, T, -1).contiguous()
        out_text = out[:B].contiguous()
        out_none = out[B:].contiguous()

        coef_cfg = self.scale_func(int(timesteps[0]))
        text_coef = coef_cfg['text_coef']
        none_coef = coef_cfg['none_coef']
        output = out_text * text_coef + out_none * none_coef
        return output