File size: 13,702 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import torch
from mmcv.runner import BaseModule
from torch import nn
from typing import Optional

from mogen.models.utils.mlp import build_MLP
from mogen.models.utils.position_encoding import (LearnedPositionalEncoding,
                                                  SinusoidalPositionalEncoding)

from ..builder import SUBMODULES


@SUBMODULES.register_module()
class ACTOREncoder(BaseModule):
    """ACTOR Encoder module for motion data.

    Args:
        max_seq_len (Optional[int]): Maximum sequence length for positional encoding.
        njoints (Optional[int]): Number of joints for motion input. Defaults to None.
        nfeats (Optional[int]): Number of features for each joint. Defaults to None.
        input_feats (Optional[int]): Total input feature dimension. Defaults to None.
        latent_dim (Optional[int]): Latent feature dimension.
        condition_dim (Optional[int]): Dimension of condition features. Defaults to None.
        num_heads (Optional[int]): Number of heads in the Transformer encoder.
        ff_size (Optional[int]): Feedforward network size in the Transformer.
        num_layers (Optional[int]): Number of layers in the Transformer encoder.
        activation (Optional[str]): Activation function for the Transformer.
        dropout (Optional[float]): Dropout probability.
        use_condition (Optional[bool]): Whether to use conditioning inputs.
        num_class (Optional[int]): Number of classes for conditional encoding. Defaults to None.
        use_final_proj (Optional[bool]): Whether to apply a final projection layer.
        output_var (Optional[bool]): Whether to output a variance along with mean.
        pos_embedding (Optional[str]): Type of positional encoding ('sinusoidal' or 'learned').
        init_cfg (Optional[dict]): Initialization configuration.
    """

    def __init__(self,
                 max_seq_len: Optional[int] = 16,
                 njoints: Optional[int] = None,
                 nfeats: Optional[int] = None,
                 input_feats: Optional[int] = None,
                 latent_dim: Optional[int] = 256,
                 condition_dim: Optional[int] = None,
                 num_heads: Optional[int] = 4,
                 ff_size: Optional[int] = 1024,
                 num_layers: Optional[int] = 8,
                 activation: Optional[str] = 'gelu',
                 dropout: Optional[float] = 0.1,
                 use_condition: Optional[bool] = False,
                 num_class: Optional[int] = None,
                 use_final_proj: Optional[bool] = False,
                 output_var: Optional[bool] = False,
                 pos_embedding: Optional[str] = 'sinusoidal',
                 init_cfg: Optional[dict] = None):
        super().__init__(init_cfg=init_cfg)
        
        # If input_feats is not provided, compute it from njoints and nfeats
        self.njoints = njoints
        self.nfeats = nfeats
        if input_feats is None:
            assert self.njoints is not None and self.nfeats is not None
            self.input_feats = njoints * nfeats
        else:
            self.input_feats = input_feats
        
        # Initialize parameters
        self.max_seq_len = max_seq_len
        self.latent_dim = latent_dim
        self.condition_dim = condition_dim
        self.use_condition = use_condition
        self.num_class = num_class
        self.use_final_proj = use_final_proj
        self.output_var = output_var

        # Linear embedding layer for skeleton input features
        self.skelEmbedding = nn.Linear(self.input_feats, self.latent_dim)

        # If using conditional inputs, set up layers for conditional processing
        if self.use_condition:
            if num_class is None:
                self.mu_layer = build_MLP(self.condition_dim, self.latent_dim)
                if self.output_var:
                    self.sigma_layer = build_MLP(self.condition_dim, self.latent_dim)
            else:
                self.mu_layer = nn.Parameter(torch.randn(num_class, self.latent_dim))
                if self.output_var:
                    self.sigma_layer = nn.Parameter(torch.randn(num_class, self.latent_dim))
        else:
            if self.output_var:
                self.query = nn.Parameter(torch.randn(2, self.latent_dim))  # Query for mu and sigma
            else:
                self.query = nn.Parameter(torch.randn(1, self.latent_dim))  # Query for mu only

        # Positional encoding setup
        if pos_embedding == 'sinusoidal':
            self.pos_encoder = SinusoidalPositionalEncoding(latent_dim, dropout)
        else:
            self.pos_encoder = LearnedPositionalEncoding(latent_dim, dropout, max_len=max_seq_len + 2)

        # Transformer encoder layers
        seqTransEncoderLayer = nn.TransformerEncoderLayer(
            d_model=self.latent_dim, nhead=num_heads, dim_feedforward=ff_size, dropout=dropout, activation=activation)
        self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer, num_layers=num_layers)

    def forward(self, motion: torch.Tensor, motion_mask: Optional[torch.Tensor] = None, condition: Optional[torch.Tensor] = None) -> torch.Tensor:
        """Forward pass for ACTOR Encoder.

        Args:
            motion (torch.Tensor): Input motion data of shape (B, T, njoints, nfeats).
            motion_mask (Optional[torch.Tensor]): Mask for valid motion data. Defaults to None.
            condition (Optional[torch.Tensor]): Conditional input. Defaults to None.

        Returns:
            torch.Tensor: Encoded latent representation.
        """
        # Get batch size (B) and sequence length (T)
        B, T = motion.shape[:2]
        
        # Flatten motion input into (B, T, input_feats)
        motion = motion.view(B, T, -1)
        
        # Embed the motion input features into latent space
        feature = self.skelEmbedding(motion)
        
        # Handle conditional inputs, concatenating condition queries
        if self.use_condition:
            if self.output_var:
                if self.num_class is None:
                    sigma_query = self.sigma_layer(condition)
                else:
                    sigma_query = self.sigma_layer[condition.long()]
                sigma_query = sigma_query.view(B, 1, -1)
                feature = torch.cat((sigma_query, feature), dim=1)

            if self.num_class is None:
                mu_query = self.mu_layer(condition).view(B, 1, -1)
            else:
                mu_query = self.mu_layer[condition.long()].view(B, 1, -1)
            feature = torch.cat((mu_query, feature), dim=1)
        else:
            query = self.query.view(1, -1, self.latent_dim).repeat(B, 1, 1)
            feature = torch.cat((query, feature), dim=1)

        # If outputting variance, adjust the mask accordingly
        if self.output_var:
            motion_mask = torch.cat((torch.zeros(B, 2).to(motion.device), 1 - motion_mask), dim=1).bool()
        else:
            motion_mask = torch.cat((torch.zeros(B, 1).to(motion.device), 1 - motion_mask), dim=1).bool()

        # Positional encoding and transformer encoder processing
        feature = feature.permute(1, 0, 2).contiguous()  # Permute for transformer
        feature = self.pos_encoder(feature)
        feature = self.seqTransEncoder(feature, src_key_padding_mask=motion_mask)

        # Apply final projection if required
        if self.use_final_proj:
            mu = self.final_mu(feature[0])
            if self.output_var:
                sigma = self.final_sigma(feature[1])
                return mu, sigma
            return mu
        else:
            if self.output_var:
                return feature[0], feature[1]
            else:
                return feature[0]


@SUBMODULES.register_module()
class ACTORDecoder(BaseModule):
    """ACTOR Decoder module for motion generation.

    Args:
        max_seq_len (Optional[int]): Maximum sequence length.
        njoints (Optional[int]): Number of joints for motion input. Defaults to None.
        nfeats (Optional[int]): Number of features for each joint. Defaults to None.
        input_feats (Optional[int]): Total input feature dimension. Defaults to None.
        input_dim (Optional[int]): Input feature dimension.
        latent_dim (Optional[int]): Latent feature dimension.
        condition_dim (Optional[int]): Dimension of condition features. Defaults to None.
        num_heads (Optional[int]): Number of heads in the Transformer decoder.
        ff_size (Optional[int]): Feedforward network size in the Transformer.
        num_layers (Optional[int]): Number of layers in the Transformer decoder.
        activation (Optional[str]): Activation function for the Transformer.
        dropout (Optional[float]): Dropout probability.
        use_condition (Optional[bool]): Whether to use conditioning inputs.
        num_class (Optional[int]): Number of classes for conditional encoding. Defaults to None.
        pos_embedding (Optional[str]): Type of positional encoding ('sinusoidal' or 'learned').
        init_cfg (Optional[dict]): Initialization configuration.
    """

    def __init__(self,
                 max_seq_len: Optional[int] = 16,
                 njoints: Optional[int] = None,
                 nfeats: Optional[int] = None,
                 input_feats: Optional[int] = None,
                 input_dim: Optional[int] = 256,
                 latent_dim: Optional[int] = 256,
                 condition_dim: Optional[int] = None,
                 num_heads: Optional[int] = 4,
                 ff_size: Optional[int] = 1024,
                 num_layers: Optional[int] = 8,
                 activation: Optional[str] = 'gelu',
                 dropout: Optional[float] = 0.1,
                 use_condition: Optional[bool] = False,
                 num_class: Optional[int] = None,
                 pos_embedding: Optional[str] = 'sinusoidal',
                 init_cfg: Optional[dict] = None):
        super().__init__(init_cfg=init_cfg)
        
        # If input_dim is different from latent_dim, we need a linear transformation
        if input_dim != latent_dim:
            self.linear = nn.Linear(input_dim, latent_dim)
        else:
            self.linear = nn.Identity()

        # Setting parameters for the number of joints, features, and sequence length
        self.njoints = njoints
        self.nfeats = nfeats
        if input_feats is None:
            assert self.njoints is not None and self.nfeats is not None
            self.input_feats = njoints * nfeats
        else:
            self.input_feats = input_feats

        # Model configuration parameters
        self.max_seq_len = max_seq_len
        self.input_dim = input_dim
        self.latent_dim = latent_dim
        self.condition_dim = condition_dim
        self.use_condition = use_condition
        self.num_class = num_class

        # If using condition input, initialize condition bias
        if self.use_condition:
            if num_class is None:
                self.condition_bias = build_MLP(condition_dim, latent_dim)
            else:
                self.condition_bias = nn.Parameter(torch.randn(num_class, latent_dim))

        # Initialize positional encoding method
        if pos_embedding == 'sinusoidal':
            self.pos_encoder = SinusoidalPositionalEncoding(latent_dim, dropout)
        else:
            self.pos_encoder = LearnedPositionalEncoding(latent_dim, dropout, max_len=max_seq_len)

        # Transformer Decoder layer definition
        seqTransDecoderLayer = nn.TransformerDecoderLayer(
            d_model=self.latent_dim,
            nhead=num_heads,
            dim_feedforward=ff_size,
            dropout=dropout,
            activation=activation)

        # Define the transformer decoder with multiple layers
        self.seqTransDecoder = nn.TransformerDecoder(seqTransDecoderLayer, num_layers=num_layers)

        # Final output layer to produce the pose from latent features
        self.final = nn.Linear(self.latent_dim, self.input_feats)

    def forward(self, input: torch.Tensor, motion_mask: Optional[torch.Tensor] = None, condition: Optional[torch.Tensor] = None) -> torch.Tensor:
        """Forward pass for ACTOR Decoder.

        Args:
            input (torch.Tensor): Input tensor from the encoder, shape (B, latent_dim).
            motion_mask (Optional[torch.Tensor]): Mask for motion data, shape (B, T). Defaults to None.
            condition (Optional[torch.Tensor]): Conditional input, shape (B, condition_dim). Defaults to None.

        Returns:
            torch.Tensor: Output pose predictions of shape (B, T, njoints * nfeats).
        """
        B = input.shape[0]  # Get batch size
        T = self.max_seq_len  # Max sequence length for decoding

        # Transform input to latent space if needed
        input = self.linear(input)

        # Add condition bias to input if using conditional inputs
        if self.use_condition:
            if self.num_class is None:
                condition = self.condition_bias(condition)
            else:
                condition = self.condition_bias[condition.long()].squeeze(1)
            input = input + condition

        # Positional encoding for query
        query = self.pos_encoder.pe[:T, :].view(T, 1, -1).repeat(1, B, 1)

        # Prepare input and pass through Transformer Decoder
        input = input.view(1, B, -1)  # Prepare input shape for decoder
        feature = self.seqTransDecoder(
            tgt=query, memory=input, tgt_key_padding_mask=(1 - motion_mask).bool())

        # Final layer to produce pose from latent features
        pose = self.final(feature).permute(1, 0, 2).contiguous()

        return pose