File size: 11,053 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Dict, Any

from ..builder import ATTENTIONS
from ..utils.stylization_block import StylizationBlock


def zero_module(module: nn.Module) -> nn.Module:
    """
    Zero out the parameters of a module and return it.
    
    Args:
        module (nn.Module): The input PyTorch module.
    
    Returns:
        nn.Module: The module with zeroed parameters.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


@ATTENTIONS.register_module()
class SemanticsModulatedAttention(nn.Module):
    """
    Semantics-modulated attention module that integrates motion, text, and retrieval features into attention computation.

    Args:
        latent_dim (int): Dimensionality of the latent (motion) features.
        text_latent_dim (int): Dimensionality of the text features.
        num_heads (int): Number of attention heads.
        dropout (float): Dropout rate.
        time_embed_dim (int): Dimensionality of time embeddings.
    """

    def __init__(self, latent_dim: int, text_latent_dim: int, num_heads: int, dropout: float, time_embed_dim: int):
        super().__init__()
        self.num_heads = num_heads

        # Layer Normalization for motion and text features
        self.norm = nn.LayerNorm(latent_dim)
        self.text_norm = nn.LayerNorm(text_latent_dim)

        # Linear projections for queries, keys, and values
        self.query = nn.Linear(latent_dim, latent_dim)
        self.key_text = nn.Linear(text_latent_dim, latent_dim)
        self.value_text = nn.Linear(text_latent_dim, latent_dim)
        self.key_motion = nn.Linear(latent_dim, latent_dim)
        self.value_motion = nn.Linear(latent_dim, latent_dim)

        # Retrieval feature processing (motion and text)
        self.retr_norm1 = nn.LayerNorm(2 * latent_dim)
        self.retr_norm2 = nn.LayerNorm(latent_dim)
        self.key_retr = nn.Linear(2 * latent_dim, latent_dim)
        self.value_retr = zero_module(nn.Linear(latent_dim, latent_dim))

        # Dropout and output projection
        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)

    def forward(self, x: torch.Tensor, xf: torch.Tensor, emb: torch.Tensor, src_mask: torch.Tensor,
                cond_type: torch.Tensor, re_dict: dict) -> torch.Tensor:
        """
        Forward pass of SemanticsModulatedAttention.

        Args:
            x (torch.Tensor): Motion features of shape (B, T, D).
            xf (torch.Tensor): Text features of shape (B, N, L).
            emb (torch.Tensor): Time embedding.
            src_mask (torch.Tensor): Source mask for the input motion features.
            cond_type (torch.Tensor): Condition type tensor.
            re_dict (dict): Dictionary containing retrieval motion, text, and mask data.

        Returns:
            torch.Tensor: Output tensor after attention modulation, shape (B, T, D).
        """
        B, T, D = x.shape
        re_motion = re_dict['re_motion']
        re_text = re_dict['re_text']
        re_mask = re_dict['re_mask'].reshape(B, -1, 1)
        N = xf.shape[1] + x.shape[1] + re_motion.shape[1] * re_motion.shape[2]  # Total number of attention keys

        H = self.num_heads
        query = self.query(self.norm(x))  # Query from motion features

        # Key and Value from text and retrieval features
        text_cond_type = (cond_type % 10 > 0).float()
        retr_cond_type = (cond_type // 10 > 0).float()
        re_text = re_text.repeat(1, 1, re_motion.shape[2], 1)
        re_feat_key = torch.cat((re_motion, re_text), dim=-1).reshape(B, -1, 2 * D)

        # Calculate keys for text, retrieval, and motion
        key_text = self.key_text(self.text_norm(xf)) + (1 - text_cond_type) * -1000000
        key_retr = self.key_retr(self.retr_norm1(re_feat_key)) + (1 - retr_cond_type) * -1000000 + (1 - re_mask) * -1000000
        key_motion = self.key_motion(self.norm(x)) + (1 - src_mask) * -1000000

        key = torch.cat((key_text, key_retr, key_motion), dim=1)  # Concatenate all keys

        query = F.softmax(query.view(B, T, H, -1), dim=-1)
        key = F.softmax(key.view(B, N, H, -1), dim=1)

        # Value computation from text, retrieval, and motion features
        re_feat_value = re_motion.reshape(B, -1, D)
        value_text = self.value_text(self.text_norm(xf)) * text_cond_type
        value_retr = self.value_retr(self.retr_norm2(re_feat_value)) * retr_cond_type * re_mask
        value_motion = self.value_motion(self.norm(x)) * src_mask
        value = torch.cat((value_text, value_retr, value_motion), dim=1).view(B, N, H, -1)

        # Attention computation and output projection
        attention = torch.einsum('bnhd,bnhl->bhdl', key, value)
        y = torch.einsum('bnhd,bhdl->bnhl', query, attention).reshape(B, T, D)
        y = x + self.proj_out(y, emb)
        return y



@ATTENTIONS.register_module()
class DualSemanticsModulatedAttention(nn.Module):
    """
    Dual semantics-modulated attention module that handles two streams of motion features and integrates
    them with text and retrieval features.

    Args:
        latent_dim (int): Dimensionality of the latent (motion) features.
        text_latent_dim (int): Dimensionality of the text features.
        num_heads (int): Number of attention heads.
        dropout (float): Dropout rate.
        time_embed_dim (int): Dimensionality of time embeddings.
    """

    def __init__(self, latent_dim: int, text_latent_dim: int, num_heads: int, dropout: float, time_embed_dim: int):
        super().__init__()
        self.num_heads = num_heads
        self.latent_dim = latent_dim

        # Layer Normalization for motion and text features
        self.norm = nn.LayerNorm(latent_dim)
        self.text_norm = nn.LayerNorm(text_latent_dim)

        # Linear projections for queries, keys, and values
        self.query = nn.Linear(latent_dim, latent_dim)
        self.key_text = nn.Linear(text_latent_dim, latent_dim)
        self.value_text = nn.Linear(text_latent_dim, latent_dim)
        self.key_motion = nn.Linear(latent_dim, latent_dim)
        self.value_motion = nn.Linear(latent_dim, latent_dim)
        self.key_inter = nn.Linear(latent_dim, latent_dim)
        self.value_inter = nn.Linear(latent_dim, latent_dim)

        # Retrieval feature processing (motion and text)
        self.retr_norm1 = nn.LayerNorm(2 * latent_dim)
        self.retr_norm2 = nn.LayerNorm(latent_dim)
        self.key_retr = nn.Linear(2 * latent_dim, latent_dim)
        self.value_retr = zero_module(nn.Linear(latent_dim, latent_dim))

        # Dropout and output projection
        self.dropout = nn.Dropout(dropout)
        self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)

    def forward(self, x: torch.Tensor, xf: torch.Tensor, emb: torch.Tensor, src_mask: torch.Tensor,
                cond_type: torch.Tensor, re_dict: dict) -> torch.Tensor:
        """
        Forward pass of DualSemanticsModulatedAttention.

        Args:
            x (torch.Tensor): Motion features of shape (B, T, 2*D).
            xf (torch.Tensor): Text features of shape (B, N, L).
            emb (torch.Tensor): Time embedding.
            src_mask (torch.Tensor): Source mask for the input motion features.
            cond_type (torch.Tensor): Condition type tensor.
            re_dict (dict): Dictionary containing retrieval motion, text, and mask data.

        Returns:
            torch.Tensor: Output tensor after dual attention modulation, shape (B, T, 2*D).
        """
        x1 = x[:, :, :self.latent_dim].contiguous()
        x2 = x[:, :, self.latent_dim:].contiguous()
        B, T, D = x1.shape
        re_motion = re_dict['re_motion']
        re_text = re_dict['re_text']
        re_mask = re_dict['re_mask'].reshape(B, -1, 1)
        N = xf.shape[1] + x.shape[1] * 2 + re_motion.shape[1] * re_motion.shape[2]

        H = self.num_heads

        # Query computation for both streams
        query1 = self.query(self.norm(x1))
        query2 = self.query(self.norm(x2))

        # Retrieval key/value feature preparation
        text_cond_type = (cond_type % 10 > 0).float()
        retr_cond_type = (cond_type // 10 > 0).float()
        re_text = re_text.repeat(1, 1, re_motion.shape[2], 1)
        re_feat_key = torch.cat((re_motion, re_text), dim=-1)
        re_feat_key = re_feat_key.reshape(B, -1, 2 * D)

        # Keys for text, retrieval, and motion
        key_text = self.key_text(self.text_norm(xf)) + (1 - text_cond_type) * -1000000
        key_retr = self.key_retr(self.retr_norm1(re_feat_key)) + (1 - retr_cond_type) * -1000000 + (1 - re_mask) * -1000000
        key_motion1 = self.key_motion(self.norm(x1)) + (1 - src_mask) * -1000000
        key_motion2 = self.key_motion(self.norm(x2)) + (1 - src_mask) * -1000000

        # Cross-attention keys for inter-stream communication
        key_inter1 = self.key_inter(self.norm(x2)) + (1 - src_mask) * -1000000
        key_inter2 = self.key_inter(self.norm(x1)) + (1 - src_mask) * -1000000

        # Concatenate all keys for the two streams
        key1 = torch.cat((key_text, key_retr, key_motion1, key_inter1), dim=1)
        key2 = torch.cat((key_text, key_retr, key_motion2, key_inter2), dim=1)

        # Softmax over queries and keys
        query1 = F.softmax(query1.view(B, T, H, -1), dim=-1)
        query2 = F.softmax(query2.view(B, T, H, -1), dim=-1)
        key1 = F.softmax(key1.view(B, N, H, -1), dim=1)
        key2 = F.softmax(key2.view(B, N, H, -1), dim=1)

        # Value computation for text, retrieval, and motion
        re_feat_value = re_motion.reshape(B, -1, D)
        value_text = self.value_text(self.text_norm(xf)) * text_cond_type
        value_retr = self.value_retr(self.retr_norm2(re_feat_value)) * retr_cond_type * re_mask
        value_motion1 = self.value_motion(self.norm(x1)) * src_mask
        value_motion2 = self.value_motion(self.norm(x2)) * src_mask

        # Inter-stream value exchange
        value_inter1 = self.value_inter(self.norm(x2)) * src_mask
        value_inter2 = self.value_inter(self.norm(x1)) * src_mask

        # Concatenate values for both streams
        value1 = torch.cat((value_text, value_retr, value_motion1, value_inter1), dim=1).view(B, N, H, -1)
        value2 = torch.cat((value_text, value_retr, value_motion2, value_inter2), dim=1).view(B, N, H, -1)

        # Compute attention outputs for both streams
        attention1 = torch.einsum('bnhd,bnhl->bhdl', key1, value1)
        attention2 = torch.einsum('bnhd,bnhl->bhdl', key2, value2)

        # Apply attention to queries and compute final output
        y1 = torch.einsum('bnhd,bhdl->bnhl', query1, attention1).reshape(B, T, D)
        y2 = torch.einsum('bnhd,bhdl->bnhl', query2, attention2).reshape(B, T, D)

        # Combine both streams and apply output projection
        y1 = x1 + self.proj_out(y1, emb)
        y2 = x2 + self.proj_out(y2, emb)
        y = torch.cat((y1, y2), dim=-1)

        return y