File size: 1,634 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.runner import build_optimizer
from mmcv.utils import Registry

OPTIMIZERS = Registry('optimizers')


def build_optimizers(model, cfgs):
    """Build multiple optimizers from configs. If `cfgs` contains several dicts
    for optimizers, then a dict for each constructed optimizers will be
    returned. If `cfgs` only contains one optimizer config, the constructed
    optimizer itself will be returned. For example,

    1) Multiple optimizer configs:

    .. code-block:: python

        optimizer_cfg = dict(
            model1=dict(type='SGD', lr=lr),
            model2=dict(type='SGD', lr=lr))

    The return dict is
    ``dict('model1': torch.optim.Optimizer, 'model2': torch.optim.Optimizer)``

    2) Single optimizer config:

    .. code-block:: python

        optimizer_cfg = dict(type='SGD', lr=lr)

    The return is ``torch.optim.Optimizer``.

    Args:
        model (:obj:`nn.Module`): The model with parameters to be optimized.
        cfgs (dict): The config dict of the optimizer.

    Returns:
        dict[:obj:`torch.optim.Optimizer`] | :obj:`torch.optim.Optimizer`:
            The initialized optimizers.
    """
    optimizers = {}
    if hasattr(model, 'module'):
        model = model.module
    # determine whether 'cfgs' has several dicts for optimizers
    if all(isinstance(v, dict) for v in cfgs.values()):
        for key, cfg in cfgs.items():
            cfg_ = cfg.copy()
            module = getattr(model, key)
            optimizers[key] = build_optimizer(module, cfg_)
        return optimizers

    return build_optimizer(model, cfgs)