Spaces:
Build error
Build error
add zidongtaichu
Browse files- __pycache__/utils.cpython-39.pyc +0 -0
- app.py +141 -0
- background.jpg +0 -0
- examples/caption/00.jpg +0 -0
- examples/caption/01.jpg +0 -0
- examples/caption/02.jpg +0 -0
- examples/caption/03.jpg +0 -0
- examples/caption/04.jpg +0 -0
- examples/caption/05.jpg +0 -0
- examples/vqa/00.jpg +0 -0
- examples/vqa/01.jpg +0 -0
- examples/vqa/02.jpg +0 -0
- examples/vqa/03.jpg +0 -0
- examples/vqa/04.jpg +0 -0
- examples/vqa/05.jpg +0 -0
- header.html +27 -0
- utils.py +46 -0
__pycache__/utils.cpython-39.pyc
ADDED
Binary file (817 Bytes). View file
|
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from utils import get_token
|
6 |
+
|
7 |
+
url_caption = os.environ["CAPTION_NODE"]
|
8 |
+
url_vqa = os.environ["VQA_NODE"]
|
9 |
+
|
10 |
+
|
11 |
+
def image_caption(file_path):
|
12 |
+
token = get_token()
|
13 |
+
|
14 |
+
files = {"file": open(file_path, "rb")}
|
15 |
+
headers = {"X-Auth-Token": token}
|
16 |
+
resp = requests.post(url_caption,
|
17 |
+
files=files,
|
18 |
+
headers=headers,
|
19 |
+
verify=False)
|
20 |
+
resp = resp.json()
|
21 |
+
desc = resp["inference_result"]["instances"]["image"][0]
|
22 |
+
return desc
|
23 |
+
|
24 |
+
|
25 |
+
def vqa(file_path, question):
|
26 |
+
token = get_token()
|
27 |
+
|
28 |
+
files = {"file": open(file_path, "rb")}
|
29 |
+
question = {"question": question}
|
30 |
+
headers = {"X-Auth-Token": token}
|
31 |
+
resp = requests.post(url_vqa,
|
32 |
+
files=files,
|
33 |
+
data=question,
|
34 |
+
headers=headers,
|
35 |
+
verify=False)
|
36 |
+
resp = resp.json()
|
37 |
+
ans = resp["inference_result"]["instances"]
|
38 |
+
return ans
|
39 |
+
|
40 |
+
|
41 |
+
def read_content(file_path):
|
42 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
43 |
+
content = f.read()
|
44 |
+
return content
|
45 |
+
|
46 |
+
|
47 |
+
examples_caption = [
|
48 |
+
os.path.join(os.path.dirname(__file__), "examples/caption/00.jpg"),
|
49 |
+
os.path.join(os.path.dirname(__file__), "examples/caption/01.jpg"),
|
50 |
+
os.path.join(os.path.dirname(__file__), "examples/caption/02.jpg"),
|
51 |
+
os.path.join(os.path.dirname(__file__), "examples/caption/03.jpg"),
|
52 |
+
os.path.join(os.path.dirname(__file__), "examples/caption/04.jpg"),
|
53 |
+
os.path.join(os.path.dirname(__file__), "examples/caption/05.jpg")
|
54 |
+
]
|
55 |
+
examples_vqa = [
|
56 |
+
os.path.join(os.path.dirname(__file__), "examples/vqa/00.jpg"),
|
57 |
+
os.path.join(os.path.dirname(__file__), "examples/vqa/01.jpg"),
|
58 |
+
os.path.join(os.path.dirname(__file__), "examples/vqa/02.jpg"),
|
59 |
+
os.path.join(os.path.dirname(__file__), "examples/vqa/03.jpg"),
|
60 |
+
os.path.join(os.path.dirname(__file__), "examples/vqa/04.jpg"),
|
61 |
+
os.path.join(os.path.dirname(__file__), "examples/vqa/05.jpg")
|
62 |
+
]
|
63 |
+
|
64 |
+
css = """
|
65 |
+
.gradio-container {background-image: url('file=./background.jpg'); background-size:cover; background-repeat: no-repeat;}
|
66 |
+
|
67 |
+
#infer {
|
68 |
+
background: linear-gradient(to bottom right, #FFD8B4, #FFB066);
|
69 |
+
border: 1px solid #ffd8b4;
|
70 |
+
border-radius: 8px;
|
71 |
+
color: #ee7400
|
72 |
+
}
|
73 |
+
"""
|
74 |
+
|
75 |
+
with gr.Blocks(css=css) as demo:
|
76 |
+
gr.HTML(read_content("./header.html"))
|
77 |
+
gr.Markdown("# MindSpore Zidongtaichu ")
|
78 |
+
gr.Markdown(
|
79 |
+
"\nOPT (Omni-Perception Pre-Trainer) is the abbreviation of the full-scene perception pre-training model. "
|
80 |
+
" It is an important achievement of the Chinese Academy of Sciences Automation and Huawei on the road to exploring general artificial intelligence."
|
81 |
+
" The modal 100 billion large model, the Chinese name is Zidong.Taichu."
|
82 |
+
" supports efficient collaboration among different modalities of text, vision, and voice,"
|
83 |
+
" and can support industrial applications such as film and television creation, industrial quality inspection, and intelligent driving."
|
84 |
+
)
|
85 |
+
|
86 |
+
with gr.Tab("以图生文 (Image Caption)"):
|
87 |
+
with gr.Row():
|
88 |
+
caption_input = gr.Image(
|
89 |
+
type="filepath",
|
90 |
+
value=examples_caption[0],
|
91 |
+
)
|
92 |
+
caption_output = gr.TextArea(label="description",
|
93 |
+
interactive=False)
|
94 |
+
caption_button = gr.Button("Submit", elem_id="infer")
|
95 |
+
gr.Examples(
|
96 |
+
examples=examples_caption,
|
97 |
+
inputs=caption_input,
|
98 |
+
)
|
99 |
+
|
100 |
+
caption_button.click(image_caption,
|
101 |
+
inputs=[caption_input],
|
102 |
+
outputs=[caption_output])
|
103 |
+
|
104 |
+
with gr.Tab("视觉问答 (VQA)"):
|
105 |
+
with gr.Row():
|
106 |
+
with gr.Column():
|
107 |
+
q_pic_input = gr.Image(type="filepath",
|
108 |
+
label="step1: select a picture")
|
109 |
+
gr.Examples(
|
110 |
+
examples=examples_vqa,
|
111 |
+
inputs=q_pic_input,
|
112 |
+
)
|
113 |
+
with gr.Column():
|
114 |
+
vqa_question = gr.TextArea(
|
115 |
+
label="step2: question",
|
116 |
+
lines=5,
|
117 |
+
placeholder="please enter a question related to the picture"
|
118 |
+
)
|
119 |
+
vqa_answer = gr.TextArea(label="answer",
|
120 |
+
lines=5,
|
121 |
+
interactive=False)
|
122 |
+
vqa_button = gr.Button("Submit", elem_id="infer")
|
123 |
+
|
124 |
+
vqa_button.click(vqa,
|
125 |
+
inputs=[q_pic_input, vqa_question],
|
126 |
+
outputs=[vqa_answer])
|
127 |
+
|
128 |
+
with gr.Accordion("Open for More!"):
|
129 |
+
gr.Markdown(
|
130 |
+
"- If you want to know more about the foundation models of MindSpore, please visit "
|
131 |
+
"[The Foundation Models Platform for Mindspore](https://xihe.mindspore.cn/)"
|
132 |
+
)
|
133 |
+
gr.Markdown(
|
134 |
+
"- If you want to know more about OPT models, please visit "
|
135 |
+
"[OPT](https://gitee.com/mindspore/zidongtaichu)")
|
136 |
+
gr.Markdown(
|
137 |
+
"- Try [zidongtaichu model on the Foundation Models Platform for Mindspore]"
|
138 |
+
"(https://xihe.mindspore.cn/modelzoo/taichug)")
|
139 |
+
|
140 |
+
demo.queue(concurrency_count=5)
|
141 |
+
demo.launch(enable_queue=True)
|
background.jpg
ADDED
examples/caption/00.jpg
ADDED
examples/caption/01.jpg
ADDED
examples/caption/02.jpg
ADDED
examples/caption/03.jpg
ADDED
examples/caption/04.jpg
ADDED
examples/caption/05.jpg
ADDED
examples/vqa/00.jpg
ADDED
examples/vqa/01.jpg
ADDED
examples/vqa/02.jpg
ADDED
examples/vqa/03.jpg
ADDED
examples/vqa/04.jpg
ADDED
examples/vqa/05.jpg
ADDED
header.html
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div style="text-align: center; max-width: 1920px; margin: 0 auto;">
|
2 |
+
<div
|
3 |
+
style="
|
4 |
+
display: inline-flex;
|
5 |
+
gap: 0.8rem;
|
6 |
+
font-size: 1.75rem;
|
7 |
+
margin-bottom: 10px;
|
8 |
+
margin-left: 220px;
|
9 |
+
justify-content: center;
|
10 |
+
"
|
11 |
+
>
|
12 |
+
</div>
|
13 |
+
<div
|
14 |
+
style="
|
15 |
+
display: inline-flex;
|
16 |
+
align-items: center;
|
17 |
+
gap: 0.8rem;
|
18 |
+
font-size: 1.75rem;
|
19 |
+
margin-bottom: 10px;
|
20 |
+
justify-content: center;
|
21 |
+
">
|
22 |
+
<a href="https://github.com/mindspore-ai/mindspore"><h1 style="font-weight: 900; align-items: center; margin-bottom: 7px;">
|
23 |
+
</h1></a>
|
24 |
+
</div>
|
25 |
+
<a href="https://github.com/mindspore-ai/mindspore"><img src="https://xihe.mindspore.cn/assets/modelzoo1.57220d1e.jpg" width="100%"></a>
|
26 |
+
|
27 |
+
</div>
|
utils.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
|
4 |
+
|
5 |
+
def get_token():
|
6 |
+
username = os.environ["USER_NAME"]
|
7 |
+
domain_name = os.environ["DOMAIN_NAME"]
|
8 |
+
domain_pwd = os.environ["DOMAIN_PWD"]
|
9 |
+
url = os.environ["IAM_URL"]
|
10 |
+
|
11 |
+
requests_json = {
|
12 |
+
"auth": {
|
13 |
+
"identity": {
|
14 |
+
"methods": ["password"],
|
15 |
+
"password": {
|
16 |
+
"user": {
|
17 |
+
"name": username,
|
18 |
+
"password": domain_pwd,
|
19 |
+
"domain": {
|
20 |
+
"name": domain_name
|
21 |
+
}
|
22 |
+
}
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"scope": {
|
26 |
+
"project": {
|
27 |
+
"name": "cn-central-221"
|
28 |
+
}
|
29 |
+
}
|
30 |
+
}
|
31 |
+
}
|
32 |
+
|
33 |
+
headers = {
|
34 |
+
"Content-Type": "application/json"
|
35 |
+
}
|
36 |
+
|
37 |
+
response = requests.post(url, json=requests_json, headers=headers)
|
38 |
+
|
39 |
+
result = response.headers
|
40 |
+
print("token success")
|
41 |
+
|
42 |
+
return result['X-Subject-Token']
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
get_token()
|