Spaces:
Runtime error
Runtime error
File size: 3,386 Bytes
7a6c4ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import requests
import json
import gradio as gr
from PIL import Image
from io import BytesIO
from utils import get_token
def generate_figure(style, desc):
url = "https://a2f051d4cabf45f885d7b0108edc9b9c.infer.ovaijisuan.com/" \
"v1/infers/975eedfd-6e15-4571-8ca9-b945da0da24b/wukong_hf"
requests_json = {
"user_name": "huggingface",
"style": style,
"desc": desc
}
headers = {
"Content-Type": "application/json",
"X-Auth-Token": token
}
response = requests.post(url, json=requests_json, headers=headers, verify=False)
response = json.loads(response.text)
status = response["status"]
assert status == 200
url_list = response["output_image_url"]
image1 = Image.open(BytesIO(requests.get(url_list[0]).content))
image2 = Image.open(BytesIO(requests.get(url_list[1]).content))
image3 = Image.open(BytesIO(requests.get(url_list[2]).content))
image4 = Image.open(BytesIO(requests.get(url_list[3]).content))
return image1, image2, image3, image4
def read_content(file_path: str) -> str:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
token = get_token()
examples = [
["宫崎骏", "城市夜景"],
["新海诚", "海滩 美景"],
["赛博朋克", "一只猫"],
]
css = """
.gradio-container {background-image: url('file=./background.jpg'); background-size:cover; background-repeat: no-repeat;}
#generate {
background: linear-gradient(#D8C5EB, #C5E8EB,#90CCF6);
border: 1px solid #C5E8EB;
border-radius: 8px;
color: #407BEA
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(read_content("./header.html"))
gr.Markdown("# MindSpore Wukong•Huahua "
" \n With the help of Wukong dataset, the largest Chinese open-source multi-modal dataset for training,"
" the Wukong-Huahua model has excellent Chinese text-image generation capabilities."
" Wukong-Huahua can identify various scene descriptions and painting styles,"
" bringing users a good experience.")
with gr.Tab("Figure Generation"):
style_input = gr.Textbox(lines=1,
placeholder="Input the style of figure you want to generate.",
label="例如:新海诚 宫崎骏 梵高 莫奈 赛博朋克",
elem_id="style-input")
desc_input = gr.Textbox(lines=1,
placeholder="Input a sentence to describe the figure you want to generate.",
label="")
gr.Examples(
examples=examples,
inputs=[style_input, desc_input],
)
generate_button = gr.Button("Generate", elem_id="generate")
with gr.Row():
img_output1 = gr.Image(type="pil")
img_output2 = gr.Image(type="pil")
img_output3 = gr.Image(type="pil")
img_output4 = gr.Image(type="pil")
with gr.Accordion("Open for More!"):
gr.Markdown("- [The Foundation models Platform for Mindspore](https://xihe.mindspore.cn/)")
generate_button.click(generate_figure,
inputs=[style_input, desc_input],
outputs=[img_output1, img_output2, img_output3, img_output4])
demo.launch()
|