File size: 4,669 Bytes
c983126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import math
import torch
import scipy.signal

import deepafx_st.processors.autodiff.signal
from deepafx_st.processors.processor import Processor


@torch.jit.script
def compressor(
    x: torch.Tensor,
    sample_rate: float,
    threshold: torch.Tensor,
    ratio: torch.Tensor,
    attack_time: torch.Tensor,
    release_time: torch.Tensor,
    knee_dB: torch.Tensor,
    makeup_gain_dB: torch.Tensor,
    eps: float = 1e-8,
):
    """Note the `release` parameter is not used."""
    # print(f"autodiff comp fs = {sample_rate}")

    s = x.size()  # should be one 1d

    threshold = threshold.squeeze()
    ratio = ratio.squeeze()
    attack_time = attack_time.squeeze()
    makeup_gain_dB = makeup_gain_dB.squeeze()

    # uni-polar dB signal
    # Turn the input signal into a uni-polar signal on the dB scale
    x_G = 20 * torch.log10(torch.abs(x) + 1e-8)  # x_uni casts type

    # Ensure there are no values of negative infinity
    x_G = torch.clamp(x_G, min=-96)

    # Static characteristics with knee
    y_G = torch.zeros(s).type_as(x)

    ratio = ratio.view(-1)
    threshold = threshold.view(-1)
    attack_time = attack_time.view(-1)
    release_time = release_time.view(-1)
    knee_dB = knee_dB.view(-1)
    makeup_gain_dB = makeup_gain_dB.view(-1)

    # Below knee
    idx = torch.where((2 * (x_G - threshold)) < -knee_dB)[0]
    y_G[idx] = x_G[idx]

    # At knee
    idx = torch.where((2 * torch.abs(x_G - threshold)) <= knee_dB)[0]
    y_G[idx] = x_G[idx] + (
        (1 / ratio) * (((x_G[idx] - threshold + knee_dB) / 2) ** 2)
    ) / (2 * knee_dB)

    # Above knee threshold
    idx = torch.where((2 * (x_G - threshold)) > knee_dB)[0]
    y_G[idx] = threshold + ((x_G[idx] - threshold) / ratio)

    x_L = x_G - y_G

    # design 1-pole butterworth lowpass
    fc = 1.0 / (attack_time * sample_rate)
    b, a = deepafx_st.processors.autodiff.signal.butter(fc)

    # apply FIR approx of IIR filter
    y_L = deepafx_st.processors.autodiff.signal.approx_iir_filter(b, a, x_L)

    lin_y_L = torch.pow(10.0, -y_L / 20.0)  # convert back to linear
    y = lin_y_L * x  # apply gain

    # apply makeup gain
    y *= torch.pow(10.0, makeup_gain_dB / 20.0)

    return y


class Compressor(Processor):
    def __init__(
        self,
        sample_rate,
        max_threshold=0.0,
        min_threshold=-80,
        max_ratio=20.0,
        min_ratio=1.0,
        max_attack=0.1,
        min_attack=0.0001,
        max_release=1.0,
        min_release=0.005,
        max_knee=12.0,
        min_knee=0.0,
        max_mkgain=48.0,
        min_mkgain=-48.0,
        eps=1e-8,
    ):
        """ """
        super().__init__()
        self.sample_rate = sample_rate
        self.eps = eps
        self.ports = [
            {
                "name": "Threshold",
                "min": min_threshold,
                "max": max_threshold,
                "default": -12.0,
                "units": "dB",
            },
            {
                "name": "Ratio",
                "min": min_ratio,
                "max": max_ratio,
                "default": 2.0,
                "units": "",
            },
            {
                "name": "Attack",
                "min": min_attack,
                "max": max_attack,
                "default": 0.001,
                "units": "s",
            },
            {
                # this is a dummy parameter
                "name": "Release (dummy)",
                "min": min_release,
                "max": max_release,
                "default": 0.045,
                "units": "s",
            },
            {
                "name": "Knee",
                "min": min_knee,
                "max": max_knee,
                "default": 6.0,
                "units": "dB",
            },
            {
                "name": "Makeup Gain",
                "min": min_mkgain,
                "max": max_mkgain,
                "default": 0.0,
                "units": "dB",
            },
        ]

        self.num_control_params = len(self.ports)

    def forward(self, x, p, sample_rate=24000, **kwargs):
        """

        Assume that parameters in p are normalized between 0 and 1.

        x (tensor): Shape batch x 1 x samples
        p (tensor): shape batch x params

        """
        bs, ch, s = x.size()

        inputs = torch.split(x, 1, 0)
        params = torch.split(p, 1, 0)

        y = []  # loop over batch dimension
        for input, param in zip(inputs, params):
            denorm_param = self.denormalize_params(param.view(-1))
            y.append(compressor(input.view(-1), sample_rate, *denorm_param))

        return torch.stack(y, dim=0).view(bs, 1, -1)