File size: 24,957 Bytes
c983126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
"""utils.py - Helper functions for building the model and for loading model parameters.
   These helper functions are built to mirror those in the official TensorFlow implementation.
"""

# Author: lukemelas (github username)
# Github repo: https://github.com/lukemelas/EfficientNet-PyTorch
# With adjustments and added comments by workingcoder (github username).

import re
import math
import collections
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import model_zoo


################################################################################
# Help functions for model architecture
################################################################################

# GlobalParams and BlockArgs: Two namedtuples
# Swish and MemoryEfficientSwish: Two implementations of the method
# round_filters and round_repeats:
#     Functions to calculate params for scaling model width and depth ! ! !
# get_width_and_height_from_size and calculate_output_image_size
# drop_connect: A structural design
# get_same_padding_conv2d:
#     Conv2dDynamicSamePadding
#     Conv2dStaticSamePadding
# get_same_padding_maxPool2d:
#     MaxPool2dDynamicSamePadding
#     MaxPool2dStaticSamePadding
#     It's an additional function, not used in EfficientNet,
#     but can be used in other model (such as EfficientDet).

# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple('GlobalParams', [
    'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate',
    'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon',
    'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top'])

# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', [
    'num_repeat', 'kernel_size', 'stride', 'expand_ratio',
    'input_filters', 'output_filters', 'se_ratio', 'id_skip'])

# Set GlobalParams and BlockArgs's defaults
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)

# Swish activation function
if hasattr(nn, 'SiLU'):
    Swish = nn.SiLU
else:
    # For compatibility with old PyTorch versions
    class Swish(nn.Module):
        def forward(self, x):
            return x * torch.sigmoid(x)


# A memory-efficient implementation of Swish function
class SwishImplementation(torch.autograd.Function):
    @staticmethod
    def forward(ctx, i):
        result = i * torch.sigmoid(i)
        ctx.save_for_backward(i)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        i = ctx.saved_tensors[0]
        sigmoid_i = torch.sigmoid(i)
        return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))


class MemoryEfficientSwish(nn.Module):
    def forward(self, x):
        return SwishImplementation.apply(x)


def round_filters(filters, global_params):
    """Calculate and round number of filters based on width multiplier.
       Use width_coefficient, depth_divisor and min_depth of global_params.

    Args:
        filters (int): Filters number to be calculated.
        global_params (namedtuple): Global params of the model.

    Returns:
        new_filters: New filters number after calculating.
    """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    # TODO: modify the params names.
    #       maybe the names (width_divisor,min_width)
    #       are more suitable than (depth_divisor,min_depth).
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor  # pay attention to this line when using min_depth
    # follow the formula transferred from official TensorFlow implementation
    new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """Calculate module's repeat number of a block based on depth multiplier.
       Use depth_coefficient of global_params.

    Args:
        repeats (int): num_repeat to be calculated.
        global_params (namedtuple): Global params of the model.

    Returns:
        new repeat: New repeat number after calculating.
    """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    # follow the formula transferred from official TensorFlow implementation
    return int(math.ceil(multiplier * repeats))


def drop_connect(inputs, p, training):
    """Drop connect.

    Args:
        input (tensor: BCWH): Input of this structure.
        p (float: 0.0~1.0): Probability of drop connection.
        training (bool): The running mode.

    Returns:
        output: Output after drop connection.
    """
    assert 0 <= p <= 1, 'p must be in range of [0,1]'

    if not training:
        return inputs

    batch_size = inputs.shape[0]
    keep_prob = 1 - p

    # generate binary_tensor mask according to probability (p for 0, 1-p for 1)
    random_tensor = keep_prob
    random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
    binary_tensor = torch.floor(random_tensor)

    output = inputs / keep_prob * binary_tensor
    return output


def get_width_and_height_from_size(x):
    """Obtain height and width from x.

    Args:
        x (int, tuple or list): Data size.

    Returns:
        size: A tuple or list (H,W).
    """
    if isinstance(x, int):
        return x, x
    if isinstance(x, list) or isinstance(x, tuple):
        return x
    else:
        raise TypeError()


def calculate_output_image_size(input_image_size, stride):
    """Calculates the output image size when using Conv2dSamePadding with a stride.
       Necessary for static padding. Thanks to mannatsingh for pointing this out.

    Args:
        input_image_size (int, tuple or list): Size of input image.
        stride (int, tuple or list): Conv2d operation's stride.

    Returns:
        output_image_size: A list [H,W].
    """
    if input_image_size is None:
        return None
    image_height, image_width = get_width_and_height_from_size(input_image_size)
    stride = stride if isinstance(stride, int) else stride[0]
    image_height = int(math.ceil(image_height / stride))
    image_width = int(math.ceil(image_width / stride))
    return [image_height, image_width]


# Note:
# The following 'SamePadding' functions make output size equal ceil(input size/stride).
# Only when stride equals 1, can the output size be the same as input size.
# Don't be confused by their function names ! ! !

def get_same_padding_conv2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
       Static padding is necessary for ONNX exporting of models.

    Args:
        image_size (int or tuple): Size of the image.

    Returns:
        Conv2dDynamicSamePadding or Conv2dStaticSamePadding.
    """
    if image_size is None:
        return Conv2dDynamicSamePadding
    else:
        return partial(Conv2dStaticSamePadding, image_size=image_size)


class Conv2dDynamicSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow, for a dynamic image size.
       The padding is operated in forward function by calculating dynamically.
    """

    # Tips for 'SAME' mode padding.
    #     Given the following:
    #         i: width or height
    #         s: stride
    #         k: kernel size
    #         d: dilation
    #         p: padding
    #     Output after Conv2d:
    #         o = floor((i+p-((k-1)*d+1))/s+1)
    # If o equals i, i = floor((i+p-((k-1)*d+1))/s+1),
    # => p = (i-1)*s+((k-1)*d+1)-i

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
        super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)  # change the output size according to stride ! ! !
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)


class Conv2dStaticSamePadding(nn.Conv2d):
    """2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size.
       The padding mudule is calculated in construction function, then used in forward.
    """

    # With the same calculation as Conv2dDynamicSamePadding

    def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs):
        super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs)
        self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.weight.size()[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2,
                                                pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = nn.Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
        return x


def get_same_padding_maxPool2d(image_size=None):
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
       Static padding is necessary for ONNX exporting of models.

    Args:
        image_size (int or tuple): Size of the image.

    Returns:
        MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding.
    """
    if image_size is None:
        return MaxPool2dDynamicSamePadding
    else:
        return partial(MaxPool2dStaticSamePadding, image_size=image_size)


class MaxPool2dDynamicSamePadding(nn.MaxPool2d):
    """2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size.
       The padding is operated in forward function by calculating dynamically.
    """

    def __init__(self, kernel_size, stride, padding=0, dilation=1, return_indices=False, ceil_mode=False):
        super().__init__(kernel_size, stride, padding, dilation, return_indices, ceil_mode)
        self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride
        self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size
        self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation

    def forward(self, x):
        ih, iw = x.size()[-2:]
        kh, kw = self.kernel_size
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return F.max_pool2d(x, self.kernel_size, self.stride, self.padding,
                            self.dilation, self.ceil_mode, self.return_indices)


class MaxPool2dStaticSamePadding(nn.MaxPool2d):
    """2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size.
       The padding mudule is calculated in construction function, then used in forward.
    """

    def __init__(self, kernel_size, stride, image_size=None, **kwargs):
        super().__init__(kernel_size, stride, **kwargs)
        self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride
        self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size
        self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation

        # Calculate padding based on image size and save it
        assert image_size is not None
        ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size
        kh, kw = self.kernel_size
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
        pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
        pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2))
        else:
            self.static_padding = nn.Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding,
                         self.dilation, self.ceil_mode, self.return_indices)
        return x


################################################################################
# Helper functions for loading model params
################################################################################

# BlockDecoder: A Class for encoding and decoding BlockArgs
# efficientnet_params: A function to query compound coefficient
# get_model_params and efficientnet:
#     Functions to get BlockArgs and GlobalParams for efficientnet
# url_map and url_map_advprop: Dicts of url_map for pretrained weights
# load_pretrained_weights: A function to load pretrained weights

class BlockDecoder(object):
    """Block Decoder for readability,
       straight from the official TensorFlow repository.
    """

    @staticmethod
    def _decode_block_string(block_string):
        """Get a block through a string notation of arguments.

        Args:
            block_string (str): A string notation of arguments.
                                Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'.

        Returns:
            BlockArgs: The namedtuple defined at the top of this file.
        """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
        assert (('s' in options and len(options['s']) == 1) or
                (len(options['s']) == 2 and options['s'][0] == options['s'][1]))

        return BlockArgs(
            num_repeat=int(options['r']),
            kernel_size=int(options['k']),
            stride=[int(options['s'][0])],
            expand_ratio=int(options['e']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            se_ratio=float(options['se']) if 'se' in options else None,
            id_skip=('noskip' not in block_string))

    @staticmethod
    def _encode_block_string(block):
        """Encode a block to a string.

        Args:
            block (namedtuple): A BlockArgs type argument.

        Returns:
            block_string: A String form of BlockArgs.
        """
        args = [
            'r%d' % block.num_repeat,
            'k%d' % block.kernel_size,
            's%d%d' % (block.strides[0], block.strides[1]),
            'e%s' % block.expand_ratio,
            'i%d' % block.input_filters,
            'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """Decode a list of string notations to specify blocks inside the network.

        Args:
            string_list (list[str]): A list of strings, each string is a notation of block.

        Returns:
            blocks_args: A list of BlockArgs namedtuples of block args.
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """Encode a list of BlockArgs to a list of strings.

        Args:
            blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args.

        Returns:
            block_strings: A list of strings, each string is a notation of block.
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


def efficientnet_params(model_name):
    """Map EfficientNet model name to parameter coefficients.

    Args:
        model_name (str): Model name to be queried.

    Returns:
        params_dict[model_name]: A (width,depth,res,dropout) tuple.
    """
    params_dict = {
        # Coefficients:   width,depth,res,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
        'efficientnet-b8': (2.2, 3.6, 672, 0.5),
        'efficientnet-l2': (4.3, 5.3, 800, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None,
                 dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True):
    """Create BlockArgs and GlobalParams for efficientnet model.

    Args:
        width_coefficient (float)
        depth_coefficient (float)
        image_size (int)
        dropout_rate (float)
        drop_connect_rate (float)
        num_classes (int)

        Meaning as the name suggests.

    Returns:
        blocks_args, global_params.
    """

    # Blocks args for the whole model(efficientnet-b0 by default)
    # It will be modified in the construction of EfficientNet Class according to model
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        image_size=image_size,
        dropout_rate=dropout_rate,

        num_classes=num_classes,
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        drop_connect_rate=drop_connect_rate,
        depth_divisor=8,
        min_depth=None,
        include_top=include_top,
    )

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """Get the block args and global params for a given model name.

    Args:
        model_name (str): Model's name.
        override_params (dict): A dict to modify global_params.

    Returns:
        blocks_args, global_params
    """
    if model_name.startswith('efficientnet'):
        w, d, s, p = efficientnet_params(model_name)
        # note: all models have drop connect rate = 0.2
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s)
    else:
        raise NotImplementedError('model name is not pre-defined: {}'.format(model_name))
    if override_params:
        # ValueError will be raised here if override_params has fields not included in global_params.
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


# train with Standard methods
# check more details in paper(EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks)
url_map = {
    'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth',
    'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth',
    'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth',
    'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth',
    'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth',
    'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth',
    'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth',
    'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth',
}

# train with Adversarial Examples(AdvProp)
# check more details in paper(Adversarial Examples Improve Image Recognition)
url_map_advprop = {
    'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth',
    'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth',
    'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth',
    'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth',
    'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth',
    'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth',
    'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth',
    'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth',
    'efficientnet-b8': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth',
}

# TODO: add the petrained weights url map of 'efficientnet-l2'


def load_pretrained_weights(model, model_name, weights_path=None, load_fc=True, advprop=False, verbose=True):
    """Loads pretrained weights from weights path or download using url.

    Args:
        model (Module): The whole model of efficientnet.
        model_name (str): Model name of efficientnet.
        weights_path (None or str):
            str: path to pretrained weights file on the local disk.
            None: use pretrained weights downloaded from the Internet.
        load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
        advprop (bool): Whether to load pretrained weights
                        trained with advprop (valid when weights_path is None).
    """
    if isinstance(weights_path, str):
        state_dict = torch.load(weights_path)
    else:
        # AutoAugment or Advprop (different preprocessing)
        url_map_ = url_map_advprop if advprop else url_map
        state_dict = model_zoo.load_url(url_map_[model_name])

    if load_fc:
        ret = model.load_state_dict(state_dict, strict=False)
        assert not ret.missing_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)
    else:
        state_dict.pop('_fc.weight')
        state_dict.pop('_fc.bias')
        ret = model.load_state_dict(state_dict, strict=False)
        assert set(ret.missing_keys) == set(
            ['_fc.weight', '_fc.bias']), 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys)
    assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys)

    if verbose:
        print('Loaded pretrained weights for {}'.format(model_name))