Spaces:
Runtime error
Runtime error
File size: 11,842 Bytes
f2500aa 6ed44d0 1a360d6 23c8307 f2500aa 04cac67 f2500aa 8d072c1 6ed44d0 f2500aa a35c034 f2500aa d5a4641 f2500aa 987f644 f2500aa d9a1b97 f2500aa 9337cfe f2500aa 02e74af e5002fc f2500aa 8d072c1 b0003b5 55c435d b0003b5 55c435d 8d072c1 55c435d 8d072c1 55c435d 8d072c1 267f542 55c435d 8d072c1 f2500aa 02e74af f2500aa 6ae67ec 02e74af 6ed44d0 97f4d75 6ed44d0 1a360d6 4e161c9 6ed44d0 8383dcd f2500aa 4e161c9 adc107a 1a360d6 6ed44d0 f2500aa 02e74af f2500aa 02e74af f2500aa 02e74af f2500aa 36833ea b0003b5 1141011 f2500aa e5002fc 23c8307 e5002fc 36833ea f2500aa 04cac67 02e74af 55c435d 02e74af 4d1ed92 02e74af 4d1ed92 b0003b5 c10dbb1 b0003b5 5f1c862 b0003b5 5f1c862 b0003b5 60bb7ab e5002fc 6ae67ec e5002fc f2500aa 9337cfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# import gradio as gr
# model_name = "models/THUDM/chatglm2-6b-int4"
# gr.load(model_name).lauch()
# %%writefile demo-4bit.py
from textwrap import dedent
# credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py
# while mistakes are mine
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
from loguru import logger
model_name = "THUDM/chatglm2-6b"
model_name = "THUDM/chatglm2-6b-int4"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
# 4/8 bit
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()
import torch
has_cuda = torch.cuda.is_available()
# has_cuda = False # force cpu
if has_cuda:
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda() # 3.92G
else:
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half() # .float() .half().float()
model = model.eval()
_ = """Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values):
try:
chatbot.append((parse_text(input), ""))
except Exception as exc:
logger.error(exc)
chatbot[-1] = (parse_text(input), str(exc))
yield chatbot, history, past_key_values
for response, history, past_key_values in model.stream_chat(tokenizer, input, history, past_key_values=past_key_values,
return_past_key_values=True,
max_length=max_length, top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history, past_key_values
def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2):
if max_length < 10:
max_length = 4096
if top_p < 0.1 or top_p > 1:
top_p = 0.85
if temperature <= 0 or temperature > 1:
temperature = 0.01
try:
res, _ = model.chat(
tokenizer,
input,
history=[],
past_key_values=None,
max_length=max_length,
top_p=top_p,
temperature=temperature,
)
# logger.debug(f"{res=} \n{_=}")
except Exception as exc:
logger.error(f"{exc=}")
res = str(exc)
return res
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], [], None
# Delete last turn
def delete_last_turn(chat, history):
if chat and history:
chat.pop(-1)
history.pop(-1)
return chat, history
# Regenerate response
def retry_last_answer(
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values
):
if chatbot and history:
# Removing the previous conversation from chat
chatbot.pop(-1)
# Setting up a flag to capture a retry
RETRY_FLAG = True
# Getting last message from user
user_input = history[-1][0]
# Removing bot response from the history
history.pop(-1)
yield from predict(
RETRY_FLAG,
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values
)
with gr.Blocks(title="ChatGLM2-6B-int4", theme=gr.themes.Soft(text_size="sm")) as demo:
# gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""")
gr.HTML("""<center><a href="https://huggingface.co/spaces/mikeee/chatglm2-6b-4bit?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>To avoid the queue and for faster inference Duplicate this Space and upgrade to GPU</center>""")
with gr.Accordion("Info", open=False):
_ = """
## ChatGLM2-6B-int4
With a GPU, a query takes from a few seconds to a few tens of seconds, dependent on the number of words/characters
the question and responses contain. The quality of the responses varies quite a bit it seems. Even the same
question with the same parameters, asked at different times, can result in quite different responses.
* Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.
* Suggested temperatures -- translation: up to 0.3; chatting: > 0.4
* Top P controls dynamic vocabulary selection based on context.
For a table of example values for different scenarios, refer to [this](https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683)
If the instance is not on a GPU (T4), it will be very slow. You can try to run the colab notebook [chatglm2-6b-4bit colab notebook](https://colab.research.google.com/drive/1WkF7kOjVCcBBatDHjaGkuJHnPdMWNtbW?usp=sharing) for a spin.
The T4 GPU is sponsored by a community GPU grant from Huggingface. Thanks a lot!
"""
gr.Markdown(dedent(_))
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", ).style(
container=False)
RETRY_FLAG = gr.Checkbox(value=False, visible=False)
with gr.Column(min_width=32, scale=1):
with gr.Row():
submitBtn = gr.Button("Submit", variant="primary")
deleteBtn = gr.Button("Delete last turn", variant="secondary")
retryBtn = gr.Button("Regenerate", variant="secondary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 32768, value=8192/2, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.85, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
past_key_values = gr.State(None)
user_input.submit(predict, [RETRY_FLAG, user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
[chatbot, history, past_key_values], show_progress=True)
submitBtn.click(predict, [RETRY_FLAG, user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
[chatbot, history, past_key_values], show_progress=True, api_name="predict")
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True)
retryBtn.click(
retry_last_answer,
inputs = [user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
#outputs = [chatbot, history, last_user_message, user_message]
outputs=[chatbot, history, past_key_values]
)
deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history])
with gr.Accordion("Example inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=[
["Explain the plot of Cinderella in a sentence."],
["How long does it take to become proficient in French, and what are the best methods for retaining information?"],
["What are some common mistakes to avoid when writing code?"],
["Build a prompt to generate a beautiful portrait of a horse"],
["Suggest four metaphors to describe the benefits of AI"],
["Write a pop song about leaving home for the sandy beaches."],
["Write a summary demonstrating my ability to tame lions"],
["鲁迅和周树人什么关系"],
["从前有一头牛,这头牛后面有什么?"],
["正无穷大加一大于正无穷大吗?"],
["正无穷大加正无穷大大于正无穷大吗?"],
["-2的平方根等于什么"],
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
["鲁迅和周树人什么关系 用英文回答"],
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
[f"{etext} 翻成中文,列出3个版本"],
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
["js 判断一个数是不是质数"],
["js 实现python 的 range(10)"],
["js 实现python 的 [*(range(10)]"],
["假定 1 + 2 = 4, 试求 7 + 8"],
["Erkläre die Handlung von Cinderella in einem Satz."],
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
],
inputs = [user_input],
)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
tr_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
tr_btn.click(trans_api, [input_text, max_length, top_p, temperature], out_text, show_progress=True, api_name="tr")
input_text.submit(trans_api, [input_text, max_length, top_p, temperature], out_text, show_progress=True, api_name="tr")
# demo.queue().launch(share=False, inbrowser=True)
# demo.queue().launch(share=True, inbrowser=True, debug=True)
demo.queue().launch(debug=True) |