Spaces:
Runtime error
Runtime error
File size: 6,933 Bytes
f2500aa 6ed44d0 1a360d6 f2500aa 04cac67 f2500aa 8d072c1 6ed44d0 f2500aa a35c034 f2500aa d5a4641 f2500aa 987f644 f2500aa d9a1b97 f2500aa 9337cfe f2500aa 8d072c1 55c435d 8d072c1 55c435d 8d072c1 55c435d 8d072c1 55c435d 8d072c1 f2500aa 6ed44d0 987f644 6ed44d0 1a360d6 6ed44d0 1a360d6 4e161c9 6ed44d0 8383dcd f2500aa 4e161c9 adc107a 1a360d6 6ed44d0 f2500aa 36833ea f2500aa 1141011 f2500aa 36833ea f2500aa 04cac67 8d072c1 55c435d f2500aa 9337cfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# import gradio as gr
# model_name = "models/THUDM/chatglm2-6b-int4"
# gr.load(model_name).lauch()
# %%writefile demo-4bit.py
from textwrap import dedent
# credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
from loguru import logger
model_name = "THUDM/chatglm2-6b"
model_name = "THUDM/chatglm2-6b-int4"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
# 4/8 bit
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()
import torch
has_cuda = torch.cuda.is_available()
# has_cuda = False # force cpu
if has_cuda:
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda() # 3.92G
else:
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half() # .float() .half().float()
model = model.eval()
_ = """Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(input, chatbot, max_length, top_p, temperature, history, past_key_values):
chatbot.append((parse_text(input), ""))
for response, history, past_key_values in model.stream_chat(tokenizer, input, history, past_key_values=past_key_values,
return_past_key_values=True,
max_length=max_length, top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history, past_key_values
def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2):
if max_length < 100:
max_length = 4096
if top_p < 0.1:
top_p = 0.8
if temperature <= 0:
temperature = 0.01
try:
res, _ = model.chat(
tokenizer,
input,
history=[],
past_key_values=None,
max_length=max_length,
top_p=top_p,
temperature=temperature,
)
# logger.debug(f"{res=} \n{_=}")
except Exception as exc:
logger.error(exc)
res = str(exc)
return res
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], [], None
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""")
with gr.Accordion("Info", open=False):
_ = """
A query takes from 30 seconds to a few tens of seconds, dependent on the number of words/characters
the question and answer contain.
* Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.
* Suggested temperatures -- translation: up to 0.3; chatting: > 0.4
* Top P controls dynamic vocabulary selection based on context.
For a table of example values for different scenarios, refer to [this](https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683)
If the instance is not on a GPU (T4), it will be very slow. You can try to run the colab notebook [chatglm2-6b-4bit colab notebook](https://colab.research.google.com/drive/1WkF7kOjVCcBBatDHjaGkuJHnPdMWNtbW?usp=sharing) for a spin.
The T4 GPU is sponsored by a community GPU grant from Huggingface. Thanks a lot!
"""
gr.Markdown(dedent(_))
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 32768, value=8192/2, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
past_key_values = gr.State(None)
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
[chatbot, history, past_key_values], show_progress=True, api_name="predict")
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True)
with gr.Accordion("For Translation API", open=False):
input_text = gr.Text()
tr_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
tr_btn.click(trans_api, [input_text, max_length, top_p, temperature], out_text, show_progress=True, api_name="tr")
# demo.queue().launch(share=False, inbrowser=True)
# demo.queue().launch(share=True, inbrowser=True, debug=True)
demo.queue().launch(debug=True) |