Spaces:
Runtime error
Runtime error
load breeds from model/config.json instead of hard-coded list
Browse files
app.py
CHANGED
@@ -1,132 +1,18 @@
|
|
|
|
1 |
import tensorflow as tf
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
import gradio as gr
|
4 |
|
5 |
tf_model = hf_hub_download(repo_id='mikachou/dog-breed-classifier', filename='tf_model.h5')
|
|
|
6 |
|
7 |
model = tf.keras.models.load_model(tf_model)
|
8 |
print(model.summary())
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
'
|
14 |
-
'Shih-Tzu',
|
15 |
-
'Blenheim spaniel',
|
16 |
-
'papillon',
|
17 |
-
'toy terrier',
|
18 |
-
'Rhodesian ridgeback',
|
19 |
-
'Afghan hound',
|
20 |
-
'basset',
|
21 |
-
'beagle',
|
22 |
-
'bloodhound',
|
23 |
-
'bluetick',
|
24 |
-
'black-and-tan coonhound',
|
25 |
-
'Walker hound',
|
26 |
-
'English foxhound',
|
27 |
-
'redbone',
|
28 |
-
'borzoi',
|
29 |
-
'Irish wolfhound',
|
30 |
-
'Italian greyhound',
|
31 |
-
'whippet',
|
32 |
-
'Ibizan hound',
|
33 |
-
'Norwegian elkhound',
|
34 |
-
'otterhound',
|
35 |
-
'Saluki',
|
36 |
-
'Scottish deerhound',
|
37 |
-
'Weimaraner',
|
38 |
-
'Staffordshire bullterrier',
|
39 |
-
'American Staffordshire terrier',
|
40 |
-
'Bedlington terrier',
|
41 |
-
'Border terrier',
|
42 |
-
'Kerry blue terrier',
|
43 |
-
'Irish terrier',
|
44 |
-
'Norfolk terrier',
|
45 |
-
'Norwich terrier',
|
46 |
-
'Yorkshire terrier',
|
47 |
-
'wire-haired fox terrier',
|
48 |
-
'Lakeland terrier',
|
49 |
-
'Sealyham terrier',
|
50 |
-
'Airedale',
|
51 |
-
'cairn',
|
52 |
-
'Australian terrier',
|
53 |
-
'Dandie Dinmont',
|
54 |
-
'Boston bull',
|
55 |
-
'miniature schnauzer',
|
56 |
-
'giant schnauzer',
|
57 |
-
'standard schnauzer',
|
58 |
-
'Scotch terrier',
|
59 |
-
'Tibetan terrier',
|
60 |
-
'silky terrier',
|
61 |
-
'soft-coated wheaten terrier',
|
62 |
-
'West Highland white terrier',
|
63 |
-
'Lhasa',
|
64 |
-
'flat-coated retriever',
|
65 |
-
'curly-coated retriever',
|
66 |
-
'golden retriever',
|
67 |
-
'Labrador retriever',
|
68 |
-
'Chesapeake Bay retriever',
|
69 |
-
'German short-haired pointer',
|
70 |
-
'vizsla',
|
71 |
-
'English setter',
|
72 |
-
'Irish setter',
|
73 |
-
'Gordon setter',
|
74 |
-
'Brittany spaniel',
|
75 |
-
'clumber',
|
76 |
-
'English springer',
|
77 |
-
'Welsh springer spaniel',
|
78 |
-
'cocker spaniel',
|
79 |
-
'Sussex spaniel',
|
80 |
-
'Irish water spaniel',
|
81 |
-
'kuvasz',
|
82 |
-
'schipperke',
|
83 |
-
'groenendael',
|
84 |
-
'malinois',
|
85 |
-
'briard',
|
86 |
-
'kelpie',
|
87 |
-
'komondor',
|
88 |
-
'Old English sheepdog',
|
89 |
-
'Shetland sheepdog',
|
90 |
-
'collie',
|
91 |
-
'Border collie',
|
92 |
-
'Bouvier des Flandres',
|
93 |
-
'Rottweiler',
|
94 |
-
'German shepherd',
|
95 |
-
'Doberman',
|
96 |
-
'miniature pinscher',
|
97 |
-
'Greater Swiss Mountain dog',
|
98 |
-
'Bernese mountain dog',
|
99 |
-
'Appenzeller',
|
100 |
-
'EntleBucher',
|
101 |
-
'boxer',
|
102 |
-
'bull mastiff',
|
103 |
-
'Tibetan mastiff',
|
104 |
-
'French bulldog',
|
105 |
-
'Great Dane',
|
106 |
-
'Saint Bernard',
|
107 |
-
'Eskimo dog',
|
108 |
-
'malamute',
|
109 |
-
'Siberian husky',
|
110 |
-
'affenpinscher',
|
111 |
-
'basenji',
|
112 |
-
'pug',
|
113 |
-
'Leonberg',
|
114 |
-
'Newfoundland',
|
115 |
-
'Great Pyrenees',
|
116 |
-
'Samoyed',
|
117 |
-
'Pomeranian',
|
118 |
-
'chow',
|
119 |
-
'keeshond',
|
120 |
-
'Brabancon griffon',
|
121 |
-
'Pembroke',
|
122 |
-
'Cardigan',
|
123 |
-
'toy poodle',
|
124 |
-
'miniature poodle',
|
125 |
-
'standard poodle',
|
126 |
-
'Mexican hairless',
|
127 |
-
'dingo',
|
128 |
-
'dhole',
|
129 |
-
'African hunting dog']
|
130 |
|
131 |
def predict(filepath):
|
132 |
img = tf.io.read_file(filepath)
|
|
|
1 |
+
import json
|
2 |
import tensorflow as tf
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
import gradio as gr
|
5 |
|
6 |
tf_model = hf_hub_download(repo_id='mikachou/dog-breed-classifier', filename='tf_model.h5')
|
7 |
+
config_json = hf_hub_download(repo_id='mikachou/dog-breed-classifier', filename='config.json')
|
8 |
|
9 |
model = tf.keras.models.load_model(tf_model)
|
10 |
print(model.summary())
|
11 |
|
12 |
+
with open(config_json) as f:
|
13 |
+
config = json.load(f)
|
14 |
+
|
15 |
+
dogs_breeds = list(config['id2label'].values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def predict(filepath):
|
18 |
img = tf.io.read_file(filepath)
|