Update app.py
Browse files
app.py
CHANGED
@@ -108,12 +108,12 @@ Here are some documents and their source links that are relevant to the question
|
|
108 |
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
|
109 |
def predict(user_input,company):
|
110 |
|
111 |
-
company_filter = "Dataset-10k/
|
112 |
|
113 |
#"./Dataset-10k/"+company+"-10-k-2023.pdf"
|
114 |
-
|
115 |
|
116 |
-
relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5)
|
117 |
|
118 |
# Create context_for_query
|
119 |
context_list = [d.page_content + "\n Page number: " + str(d.metadata['page']) + "\n ###Source: " + d.metadata['source'] + "\n\n " for d in relevant_document_chunks]
|
|
|
108 |
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
|
109 |
def predict(user_input,company):
|
110 |
|
111 |
+
company_filter = "/content/drive/MyDrive/Dataset-10k/Meta-10-k-2023.pdf"
|
112 |
|
113 |
#"./Dataset-10k/"+company+"-10-k-2023.pdf"
|
114 |
+
relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":company_filter})
|
115 |
|
116 |
+
#relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5)
|
117 |
|
118 |
# Create context_for_query
|
119 |
context_list = [d.page_content + "\n Page number: " + str(d.metadata['page']) + "\n ###Source: " + d.metadata['source'] + "\n\n " for d in relevant_document_chunks]
|