File size: 6,500 Bytes
d65d899 fcd02ae d65d899 054e39d d65d899 fcd02ae d65d899 7b6ece8 c77b024 d65d899 fc6ebce d65d899 6c440de d65d899 eb206d3 d65d899 46ef6f4 d65d899 46ef6f4 d65d899 46ef6f4 eb206d3 46ef6f4 d65d899 971d6f1 a0e073d 971d6f1 d65d899 43ccbba 971d6f1 6c440de d65d899 d953a8e d65d899 eb206d3 d65d899 6c440de d65d899 73847fd d65d899 73847fd d65d899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
## Setup
# Import the necessary Libraries
import gradio as gr
import pandas as pd
import os
import json
import uuid
import tiktoken
from openai import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings
)
from langchain_community.vectorstores import Chroma
from langchain_community.chat_models import ChatOpenAI
from huggingface_hub import CommitScheduler
from pathlib import Path
# Create Client
anyscale_api_key = os.getenv('anyscale_apiKey')
client = OpenAI(base_url="https://api.endpoints.anyscale.com/v1",
api_key=anyscale_api_key
)
# Define the embedding model and the vectorstore
model_name = "mlabonne/NeuralHermes-2.5-Mistral-7B"
embedding_model = SentenceTransformerEmbeddings(model_name="thenlper/gte-large")
persisted_vectordb_location = './finsightsdb'
collection_name = 'finsights_grey-10k'
# Load the persisted vectorDB
vectorstore_persisted = Chroma(
collection_name=collection_name,
persist_directory=persisted_vectordb_location,
embedding_function=embedding_model
)
# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
scheduler = CommitScheduler(
repo_id="MJackman-Project3-logs",
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
# Define the Q&A system message
qna_system_message = """
You are an assistant to a financial services firm. Your task is to determine the most effective platform to support the generation by the firm of advanced analytics and insights for investment management and financial planning.
User input will include the necessary context for you to answer their questions. This context will begin with the token: ###Context.
The context contains references to specific portions of documents relevant to the user's query, along with source links.
The source for a context will begin with the token ###Source
When crafting your response:
1. Select only context relevant to answer the question.
2. Include the source links in your response.
3. Include the page number of the source links where the answer was found in your response.
4. User questions will begin with the token: ###Question.
5. If the question is irrelevant to the firm's business respond with - "I am an AI assistant for Finsights Grey Inc. I can only help you with questions related to financial analytics."
Please adhere to the following guidelines:
- Your response should only be about the question asked and nothing else.
- Answer only using the context provided.
- Do not mention anything about the context in your final answer.
- If the answer is not found in the context, it is very very important for you to respond with "I don't know. Please check the docs @ 'https://docs.finsights.io/'"
- Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
- Always provide the relevant page number(s) where the answer was found in the cited source. Cite the relevant page number at the end of your response under the section - Page Number:
- Do not make up sources. Use the links provided in the sources section of the context and nothing else. You are prohibited from providing other links/sources.
Here is an example of how to structure your response:
Answer:
[Answer]
Source:
[Source]
Page Number(s):
[Page Number]
"""
# Define the user message template
qna_user_message_template = """
###Context
Here are some documents and their source links that are relevant to the question mentioned below.
{context}
###Question
{question}
"""
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
def predict(user_input,company):
company_filter = "/content/drive/MyDrive/Dataset-10k/" + str(company) + "-10-k-2023.pdf"
relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":company_filter})
# Create context_for_query
context_list = [d.page_content + "\n Page number: " + str(d.metadata['page']) + "\n ###Source: " + d.metadata['source'] + "\n\n " for d in relevant_document_chunks]
context_for_query = ". ".join(context_list)
# Create messages
prompt = [
{'role':'system', 'content': qna_system_message},
{'role': 'user', 'content': qna_user_message_template.format(
context=context_for_query,
question=user_input
)
}
]
# Get response from the LLM
# Handle errors using try-except
# print the content of the response
try:
response = client.chat.completions.create(
model=model_name,
messages=prompt,
temperature=0
)
prediction = response.choices[0].message.content.strip()
except Exception as e:
prediction = f'Sorry, I encountered the following error: \n {e}'
print(prediction)
# While the prediction is made, log both the inputs and outputs to a local log file
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
# access
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'user_input': user_input,
'retrieved_context': context_for_query,
'model_response': prediction
}
))
f.write("\n")
return prediction
# Set-up the Gradio UI
# Add text box and radio button to the interface
# The radio button is used to select the company 10k report in which the context needs to be retrieved.
# The text box is used to enter the question.
# The submit button is used to run the predict function
textbox = gr.Textbox(label="Enter your question:")
company = gr.Radio(choices=['aws', 'google', 'Meta', 'msft', 'IBM'], label="Select a company:")
model_output = gr.Label(label='Answer to your qestion')
# Create the interface
# For the inputs parameter of Interface provide [textbox,company]
# For the outputs parameter of Interface provide [predict]
demo = gr.Interface(
fn=predict,
inputs=[textbox,company],
outputs=model_output,
title="AI-Powered Question Answering")
# Run the interface
demo.queue()
demo.launch()
|