miittnnss commited on
Commit
adebd8e
·
1 Parent(s): 8b464cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -4,6 +4,8 @@ import json
4
  import io
5
  import random
6
  import os
 
 
7
  from PIL import Image
8
 
9
  API_BASE_URL = "https://api-inference.huggingface.co/models/"
@@ -28,6 +30,8 @@ MODEL_LIST = [
28
  API_TOKEN = os.getenv("HF_READ_TOKEN") # Make sure to set your Hugging Face token
29
  HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
30
 
 
 
31
  def select_model(model_name):
32
  if model_name in MODEL_LIST:
33
  return f"{API_BASE_URL}{model_name}"
@@ -37,17 +41,12 @@ def extend_prompt(input_text):
37
  gr.Warning("Input text is empty!")
38
  return None
39
 
40
- API_URL = f"{API_BASE_URL}Gustavosta/MagicPrompt-Stable-Diffusion"
 
41
 
42
- payload = {"inputs": input_text}
43
 
44
- try:
45
- response = requests.post(API_URL, headers=HEADERS, json=payload)
46
- response.raise_for_status()
47
- return response.json()[0].get("generated_text", "")
48
- except requests.exceptions.RequestException as e:
49
- gr.Warning(f"Error in API request: {e}")
50
- return None
51
 
52
  def generate_image(prompt, selected_model, is_negative=False, steps=1, cfg_scale=6, seed=None):
53
  if not prompt.strip():
 
4
  import io
5
  import random
6
  import os
7
+ import torch
8
+ from transformers import pipeline
9
  from PIL import Image
10
 
11
  API_BASE_URL = "https://api-inference.huggingface.co/models/"
 
30
  API_TOKEN = os.getenv("HF_READ_TOKEN") # Make sure to set your Hugging Face token
31
  HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
32
 
33
+ pipe = pipeline("text-generation", model="isek-ai/SDPrompt-RetNet-300M", trust_remote_code=True)
34
+
35
  def select_model(model_name):
36
  if model_name in MODEL_LIST:
37
  return f"{API_BASE_URL}{model_name}"
 
41
  gr.Warning("Input text is empty!")
42
  return None
43
 
44
+ seed = random.randint(1, 1000000)
45
+ torch.manual_seed(seed)
46
 
47
+ output = pipe(input_text, max_length=(len(input_text) + random.randint(60, 90)), num_return_sequences=4)
48
 
49
+ return output
 
 
 
 
 
 
50
 
51
  def generate_image(prompt, selected_model, is_negative=False, steps=1, cfg_scale=6, seed=None):
52
  if not prompt.strip():