gokaygokay's picture
Create app.py
ade70cf verified
raw
history blame
3.45 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor
from PIL import Image, ImageDraw
import requests
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import random
# Load model and processor
model_id = 'microsoft/Florence-2-large'
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval()
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
def run_example(task_prompt, image, text_input=None):
prompt = task_prompt if text_input is None else task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def plot_bbox(image, data):
fig, ax = plt.subplots()
ax.imshow(image)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
plt.axis('off')
plt.show()
def draw_polygons(image, prediction, fill_mask=False):
draw = ImageDraw.Draw(image)
colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red']
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = random.choice(colormap)
fill_color = color if fill_mask else None
for polygon in polygons:
draw.polygon(polygon, outline=color, fill=fill_color)
draw.text((polygon[0][0], polygon[0][1]), label, fill=color)
image.show()
def gradio_interface(image, task_prompt, text_input):
result = run_example(task_prompt, image, text_input)
if task_prompt in ['<OD>', '<OPEN_VOCABULARY_DETECTION>']:
plot_bbox(image, result)
elif task_prompt in ['<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>']:
draw_polygons(image, result, fill_mask=True)
return result
with gr.Blocks() as demo:
gr.Markdown("## Florence Model Advanced Tasks")
with gr.Row():
image_input = gr.Image(type="pil")
task_input = gr.Dropdown(label="Select Task", choices=[
'<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>',
'<OD>', '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>',
'<CAPTION_TO_PHRASE_GROUNDING>', '<REFERRING_EXPRESSION_SEGMENTATION>',
'<REGION_TO_SEGMENTATION>', '<OPEN_VOCABULARY_DETECTION>',
'<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>', '<OCR>', '<OCR_WITH_REGION>'
])
text_input = gr.Textbox(label="Optional Text Input", placeholder="Enter text here if required by the task")
submit_btn = gr.Button("Run Task")
output = gr.Textbox(label="Output")
submit_btn.click(fn=gradio_interface, inputs=[image_input, task_input, text_input], outputs=output)
demo.launch()