andito's picture
andito HF staff
Changed model for DocVQA and added task
50fae8a
raw
history blame
9.3 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import spaces
import requests
import copy
from PIL import Image, ImageDraw, ImageFont
import io
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import random
import numpy as np
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval()
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
DESCRIPTION = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
def fig_to_pil(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
@spaces.GPU
def run_example(task_prompt, image, text_input=None):
model = model
processor = processor
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def plot_bbox(image, data):
fig, ax = plt.subplots()
ax.imshow(image)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
ax.axis('off')
return fig
def draw_polygons(image, prediction, fill_mask=False):
draw = ImageDraw.Draw(image)
scale = 1
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = random.choice(colormap)
fill_color = random.choice(colormap) if fill_mask else None
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
if fill_mask:
draw.polygon(_polygon, outline=color, fill=fill_color)
else:
draw.polygon(_polygon, outline=color)
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
return image
def convert_to_od_format(data):
bboxes = data.get('bboxes', [])
labels = data.get('bboxes_labels', [])
od_results = {
'bboxes': bboxes,
'labels': labels
}
return od_results
def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text((new_box[0]+8, new_box[1]+2),
"{}".format(label),
align="right",
fill=color)
return image
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'):
image = Image.fromarray(image) # Convert NumPy array to PIL Image
if task_prompt == 'Document Visual Question Answering':
task_prompt = '<DocVQA>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'Caption':
task_prompt = '<CAPTION>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'Detailed Caption':
task_prompt = '<DETAILED_CAPTION>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'More Detailed Caption':
task_prompt = '<MORE_DETAILED_CAPTION>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'Object Detection':
task_prompt = '<OD>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<OD>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Dense Region Caption':
task_prompt = '<DENSE_REGION_CAPTION>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Region Proposal':
task_prompt = '<REGION_PROPOSAL>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Caption to Phrase Grounding':
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
results = run_example(task_prompt, image, text_input)
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Referring Expression Segmentation':
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
results = run_example(task_prompt, image, text_input)
output_image = copy.deepcopy(image)
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
return results, output_image
elif task_prompt == 'Region to Segmentation':
task_prompt = '<REGION_TO_SEGMENTATION>'
results = run_example(task_prompt, image, text_input)
output_image = copy.deepcopy(image)
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
return results, output_image
elif task_prompt == 'Open Vocabulary Detection':
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
results = run_example(task_prompt, image, text_input)
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
fig = plot_bbox(image, bbox_results)
return results, fig_to_pil(fig)
elif task_prompt == 'Region to Category':
task_prompt = '<REGION_TO_CATEGORY>'
results = run_example(task_prompt, image, text_input)
return results, None
elif task_prompt == 'Region to Description':
task_prompt = '<REGION_TO_DESCRIPTION>'
results = run_example(task_prompt, image, text_input)
return results, None
elif task_prompt == 'OCR':
task_prompt = '<OCR>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'OCR with Region':
task_prompt = '<OCR_WITH_REGION>'
results = run_example(task_prompt, image)
output_image = copy.deepcopy(image)
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
return results, output_image
else:
return "", None # Return empty string and None for unknown task prompts
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Florence-2 Image Captioning"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
task_prompt = gr.Dropdown(choices=[
'Document Visual Question Answering',
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
'Referring Expression Segmentation', 'Region to Segmentation',
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
'OCR', 'OCR with Region'
], label="Task Prompt", value= 'Document Visual Question Answering')
text_input = gr.Textbox(label="Text Input (optional)")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
output_img = gr.Image(label="Output Image")
gr.Examples(
examples=[
["image1.jpg", 'Object Detection'],
["image2.jpg", 'OCR with Region']
],
inputs=[input_img, task_prompt],
outputs=[output_text, output_img],
fn=process_image,
cache_examples=True,
label='Try examples'
)
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
demo.launch(debug=True)